

E-ISSN: 2709-9407
P-ISSN: 2709-9393
JMPES 2023; 4(2): 01-08
© 2023 JMPES
www.mathematicaljournal.com
Received: 02-04-2023
Accepted: 05-05-2023
Dr. PK Deveka
Assistant Professor, Department of Statistics, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India

## K Saranya

Research Scholar, Department of Statistics, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India

## Corresponding Author:

Dr. PK Deveka
Assistant Professor, Department of Statistics, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India

# Construction of acceptance sampling plans for the quartile ranked set sampling using Laplace distribution 

Dr. PK Deveka and K Saranya

DOI: https://doi.org/10.22271/math.2023.v4.i2a.95


#### Abstract

The ranked set sampling method has been made more inclusive in this paper. In order to estimate the quartile ranked set sampling of the Laplace distribution, the generalized ranked set sampling technique is used. Two key factors are taken into account for the new course of action: the data are selected using the Quartile Ranked Set inspecting plan from a significant portion, and the lifetime of the test units is acknowledged to follow the summary noteworthy dissemination. The base number of set cycles and, consequently, the base sample size are crucial to ensuring that the predefined normal life are acquired and the working trademark advantages of the positioned examining plans only, as the appropriation work portrayal under the Quartile Ranked Set inspecting plan is determined expecting that the set size is known.


Keywords: Quartile ranked set sampling, acceptance sampling plans, Laplace distribution, operating characteristic function value, producer's risk, consumer's risk

## Introduction

Sampling for Ranked Set (RSS) was suggested by McIntyre (1952) ${ }^{[7]}$. In the essential stage, $m$ autonomous Simple Random Sample (SRS) all of size $m$ are drawn from a given part, and a short time later a free cost situating part is used to rank the units inside each sr. In the resulting stage, the things picked purposely; so much that the thing with the chief position is looked over the essential SRS, and a while later in the second SRS the thing with rank two is picked, etc. till the unit with the best position is browsed the last SRS (Takahasi and Wakimoto, 1968; Sinha et al., 1996) ${ }^{[8-9]}$.
RSS can be used in various clinical, agricultural and moderate fields. The fundamental point of this article is to involve the RSS in acknowledgment testing research region as opposed to further developing the RSS conspire. Regardless, none of the past examination pondered any of the RSS thoughts in the acknowledgment testing setting, this article could be considered as another commitment in this functional exploration region.The technique for the old-style Acceptance Sampling Plan (ASP) in light of an SRS comprises of the resulting steps:
Step 1: Draw an SRS of size ' $n$ ' items from a large lot.
Step 2: Classify each item within the selected sample as defective or non-defective item.
Step 3: If the number of defective items exceeds the acceptance number(c), then the entire lot is rejected: otherwise, it is accepted.
In this way, in developing any acknowledgment examining plan to figure out the base sample size ( n ) to acknowledge a lot and the acceptance number(c), likewise utilize single testing plans by ASP ( $\mathrm{n}, \mathrm{c}$ ). Generally, with each $\operatorname{ASP}(\mathrm{n}, \mathrm{c})$, the issue is to track down the obscure boundary n and c that fulfils:
$P\left(X \leq c / n, p_{1}\right)=1-\alpha$
$\mathrm{P}\left(\mathrm{X} \leq \mathrm{c} / \mathrm{n}, \mathrm{p}_{2}\right)=\beta$
Where $\alpha$ is the Type I mistake and $\beta$ is the Type II mistake. Besides, p 1 is as far as quality limit for acceptable (AQL) and p 2 is the percent defective for lot tolerance (LTPD). The issue that we are presenting in this message is with recollecting the QRSS in picking the things from a huge parcel expecting under the Laplace distributions. The huge thought of the usage of

QRSS in acknowledgment examining setting is to cut down the maker peril that risings while the contraptions picked through the normal ASP ( $\mathrm{n}, \mathrm{c}$ ) basically reliant upon a SRS strategies Muttak (2003) proposed quartile Ranked set testing (QRSS) to gauge the populace mean and he showed that utilizing QRSS method will lessen the blunders in positioning contrasting with RSS since select and quantify the first or the third quartile of the example. In this paper the Construction of Acceptance Sampling Plans for the Quartile Ranked Set Sampling using Laplace Distribution is proposed. The steps of choosing QRSS are as follows:

- The quartile ranked set sampling procedure as suggested by Muttlak ${ }^{[1]}$ can be summarized as follows. Randomly select $n$ samples each of size $n$ units from the target population and rank the units within each sample with respect to the variable of interest.
- If the sample size $n$ is even, select and measure from the first $n / 4$ samples the $\mathrm{Q} 1(\mathrm{n}+1)^{\text {th }}$ smallest ranked unit of each sample, i.e., the first quartile, and from the second $3^{*} \mathrm{n} / 4$ samples the $\mathrm{Q} 3(\mathrm{n}+1)^{\text {th }}$ smallest ranked unit of each sample, i.e., the third quartile. Always take the nearest integer of Q1 $(\mathrm{n}+1)^{\text {th }}$ and $\mathrm{Q} 3(\mathrm{n}+1)^{\text {th }}$ where $\mathrm{Q} 1=$ $25 \%$, and Q3 $=75 \%$.
- If the sample size $n$ is odd, select and measure from the first $(\mathrm{n}-1) / 4$ samples the $\mathrm{Q} 1(\mathrm{n}+1)^{\text {th }}$ smallest ranked unit of each sample and from the other $3(n-1) / 4$ samples the Q3 $(\mathrm{n}+1)^{\text {th }}$ smallest ranked unit of each sample, and from one sample the median for that sample.
- The cycle can be repeated $m$ times if needed to get a sample of size ' $m$ *r' units

Now, let $X_{11}, X_{12, .,} X_{1 m} ; X_{21}, X_{22, .,}, X_{2 m} ; . ; X_{m 1}, X_{m 2, .,} X_{m m}$ be $m$ independent SRS each of size $m$; then among the $m$ samples, select the minimum measurement unit from the first SRS and the second minimum unit from the second SRS, continuing in the same process until we select the maximum measurement unit from the last SRS for actual measurement. The element of the favoured QRSS pattern will be inside the shape:
$\left\{X_{[n-1 / 4, n] i j} ; i=1,2, . m, j=1,2, ., r\right\} n$ is odd
$\left\{X_{[n / 4 ; n] \mathrm{j} j}, X_{[n-1 / 4 ; n] k j} ; i=1,2, ., m / 4 ; k=m / 4+1, . m, j=1,2, r r\right\} n$ is even

The $i^{\text {th }}$ order statistic is given by,
$F_{X(i)}=(F(x))^{i-1}(1-F(x))^{n-i},-\infty<x<\infty$

Therefore, Quartile Ranked Set Sampling is given by
$\mathrm{F}_{\mathrm{QRSS}(\mathrm{x})}=(\mathrm{F}(\mathrm{x}))^{\mathrm{m}}(1-\mathrm{F}(\mathrm{x}))^{\mathrm{m}}$
Where $\mathrm{F}(\mathrm{x})$ is denoted by ' $\mathrm{q}_{1}$ ' and $1-\mathrm{F}(\mathrm{x})$ is denoted by ' $\mathrm{q}_{3}$ '. Most of investigations of positioned insights have been ranked data with assessing the population mean.

Characterization of the Laplace Distribution under QRSS
In this portion, the appropriations could be re described fundamentally dependent on the QRSS. The effect of the shape parameter on the distribution structure under QRSS using Laplace distribution

## Characterization of the Laplace Distribution for SRS

$\mathrm{f}(\mathrm{x}, \mu, \mathrm{b})=\frac{1}{2 b}\left(\exp \frac{-|x-\mu|}{b}\right)$

## Characterization of the Laplace distribution for QRSS

$\mathrm{f}_{\mathrm{QRSS}}(\mathrm{x})=\frac{1}{2 b}\left(\exp \frac{-|x-\mu|}{b}\right)^{m}\left(1-\exp \frac{-|x-\mu|}{b}\right)^{m}$

## Operating Characteristic (OC) Curve

Related with each reviewing plan there is an OC curve which portrays the show of the examining plan against perfect and inferior quality. The probability that a great deal will be recognized under a given inspecting plan which is demonstrated by $\mathrm{Pa}(\mathrm{p})$ and a plot of $\mathrm{Pa}(\mathrm{p})$ against given worth of part or cycle quality $p$ will yield the OC bend. For one of a kind explanation plans the OC curve, a bend showing the likelihood of continuing to permit the cooperation to happen without change as an element of the interaction quality.
The curve plots the probability of accepting the lot ( Pa ) versus the lot fraction defective (p)
$\mathrm{Pa}=\mathrm{P}\{\mathrm{d} \leq \mathrm{c}\}=\sum_{i=0}^{c} p^{i} 1-p^{n-i}$
Laplace distribution for QRSS will be
$\mathrm{Pa}=\sum_{i=0}^{c} \frac{1}{2 b}\left(\exp \frac{-|x-\mu|}{b}\right)^{i}\left(1-\exp \frac{-|x-\mu|}{b}\right)^{(n-i)}$
The given table shows the OC curve values for QRSS using Laplace distribution for $\mathrm{N}=1000$,
$\mathrm{m}=50, \mathrm{~s}=20, \mathrm{r}=1,2,3,4,5,6$ and $\mathrm{n}=50,100,150,200,250$ and 300 .

Table 1: The OC Curve Values for Laplace Distribution using QRSS

| N | 1m | 2m | 3m | 4m | 5m | 6m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | $\mathbf{C = 0}$ |  |  |  |  |  |
| 0.010 | 0.998458 | 0.996919 | 0.995383 | 0.993848 | 0.992316 | 0.990786 |
| 0.015 | 0.99746 | 0.994926 | 0.992398 | 0.989877 | 0.987362 | 0.984854 |
| 0.020 | 0.995815 | 0.991647 | 0.987497 | 0.983364 | 0.979248 | 0.97515 |
| 0.025 | 0.993108 | 0.986264 | 0.979467 | 0.972717 | 0.966014 | 0.959356 |
| 0.030 | 0.988661 | 0.977451 | 0.966367 | 0.95541 | 0.944576 | 0.933866 |
| 0.035 | 0.981369 | 0.963084 | 0.945141 | 0.927531 | 0.91025 | 0.893291 |
| 0.040 | 0.969453 | 0.93984 | 0.911131 | 0.883299 | 0.856317 | 0.83016 |
| 0.045 | 0.950099 | 0.902688 | 0.857642 | 0.814845 | 0.774183 | 0.735551 |
| 0.050 | 0.918963 | 0.844493 | 0.776058 | 0.713169 | 0.655376 | 0.602266 |
| 0.055 | 0.869672 | 0.756329 | 0.657758 | 0.572033 | 0.497481 | 0.432645 |
| P |  |  |  |  |  |  |
| 0.010 | 0.998582 | 0.997042 | 0.995505 | 0.993971 | 0.992439 | 0.990909 |
| 0.015 | 0.997663 | 0.995128 | 0.9926 | 0.990079 | 0.987563 | 0.985055 |
| 0.020 | 0.996149 | 0.99198 | 0.987828 | 0.983694 | 0.979577 | 0.975477 |


| 0.025 | 0.993658 | 0.98681 | 0.980009 | 0.973256 | 0.966548 | 0.959887 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.030 | 0.989563 | 0.978343 | 0.967249 | 0.956282 | 0.945439 | 0.934718 |  |
| 0.035 | 0.982846 | 0.964534 | 0.946564 | 0.928928 | 0.911621 | 0.894636 |  |
| 0.040 | 0.971862 | 0.942175 | 0.913395 | 0.885494 | 0.858445 | 0.832223 |  |
| 0.045 | 0.953998 | 0.906392 | 0.861162 | 0.818189 | 0.77736 | 0.738569 |  |
| 0.050 | 0.925197 | 0.850222 | 0.781322 | 0.718006 | 0.659821 | 0.606351 |  |
| 0.055 | 0.879441 | 0.764825 | 0.665147 | 0.578459 | 0.50307 | 0.437505 |  |
| $\mathbf{P}$ | $\mathbf{C = 2}$ |  |  |  |  |  | 0.9 |
| 0.010 | 0.998705 | 0.997165 | 0.995383 | 0.994093 | 0.992561 | 0.991031 |  |
| 0.015 | 0.997866 | 0.995331 | 0.992802 | 0.99028 | 0.987764 | 0.985255 |  |
| 0.020 | 0.996483 | 0.992313 | 0.98816 | 0.984024 | 0.979906 | 0.975805 |  |
| 0.025 | 0.994208 | 0.987356 | 0.980552 | 0.973794 | 0.967083 | 0.960418 |  |
| 0.030 | 0.990467 | 0.979236 | 0.968132 | 0.957155 | 0.946302 | 0.935571 |  |
| 0.035 | 0.984326 | 0.965987 | 0.947989 | 0.930327 | 0.912994 | 0.895983 |  |
| 0.040 | 0.974277 | 0.944517 | 0.915665 | 0.887694 | 0.860578 | 0.834291 |  |
| 0.045 | 0.957912 | 0.910111 | 0.864696 | 0.821546 | 0.78055 | 0.7416 |  |
| 0.050 | 0.931473 | 0.855989 | 0.786623 | 0.722877 | 0.664297 | 0.610465 |  |
| 0.055 | 0.889321 | 0.773417 | 0.672619 | 0.584958 | 0.508721 | 0.44242 |  |


| 0 | 1m | 2m | 3m | 4m | 5m | 6m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | $\mathrm{C}=3$ |  |  |  |  |  |
| 0.010 | 0.998828 | 0.997288 | 0.995751 | 0.994216 | 0.992684 | 0.991153 |
| 0.015 | 0.998069 | 0.995533 | 0.993004 | 0.990482 | 0.987965 | 0.985456 |
| 0.020 | 0.996818 | 0.992646 | 0.988491 | 0.984354 | 0.980235 | 0.976132 |
| 0.025 | 0.994758 | 0.987903 | 0.981094 | 0.974333 | 0.967618 | 0.96095 |
| 0.030 | 0.991371 | 0.98013 | 0.969016 | 0.958028 | 0.947165 | 0.936425 |
| 0.035 | 0.985808 | 0.967441 | 0.949417 | 0.931728 | 0.914368 | 0.897332 |
| 0.040 | 0.976698 | 0.946864 | 0.91794 | 0.8899 | 0.862717 | 0.836364 |
| 0.045 | 0.961843 | 0.913846 | 0.868244 | 0.824918 | 0.783753 | 0.744643 |
| 0.050 | 0.937792 | 0.861796 | 0.791959 | 0.727781 | 0.668804 | 0.614606 |
| 0.055 | 0.899311 | 0.782106 | 0.680175 | 0.591529 | 0.514436 | 0.44739 |
| P | $\mathrm{C}=4$ |  |  |  |  |  |
| 0.010 | 0.998952 | 0.997412 | 0.995874 | 0.994339 | 0.992806 | 0.991276 |
| 0.015 | 0.998272 | 0.995736 | 0.993206 | 0.990683 | 0.988166 | 0.985656 |
| 0.020 | 0.997152 | 0.992979 | 0.988823 | 0.984685 | 0.980564 | 0.97646 |
| 0.025 | 0.995309 | 0.988449 | 0.981637 | 0.974872 | 0.968154 | 0.961482 |
| 0.030 | 0.992275 | 0.981024 | 0.9699 | 0.958903 | 0.94803 | 0.93728 |
| 0.035 | 0.987293 | 0.968898 | 0.950846 | 0.93313 | 0.915745 | 0.898683 |
| 0.040 | 0.979125 | 0.949216 | 0.920221 | 0.892112 | 0.864861 | 0.838442 |
| 0.045 | 0.96579 | 0.917596 | 0.871807 | 0.828303 | 0.786969 | 0.747699 |
| 0.050 | 0.944154 | 0.867642 | 0.797331 | 0.732718 | 0.673341 | 0.618775 |
| 0.055 | 0.909414 | 0.790892 | 0.687816 | 0.598174 | 0.520215 | 0.452416 |
| P | C=5 |  |  |  |  |  |
| 0.010 | 0.999075 | 0.997535 | 0.995997 | 0.994462 | 0.992929 | 0.991398 |
| 0.015 | 0.998475 | 0.995938 | 0.993408 | 0.990885 | 0.988368 | 0.985857 |
| 0.020 | 0.997487 | 0.993312 | 0.989155 | 0.985015 | 0.980893 | 0.976787 |
| 0.025 | 0.995859 | 0.988996 | 0.98218 | 0.975412 | 0.96869 | 0.962014 |
| 0.030 | 0.993181 | 0.981919 | 0.970786 | 0.959778 | 0.948895 | 0.938136 |
| 0.035 | 0.988779 | 0.970357 | 0.952278 | 0.934535 | 0.917124 | 0.900037 |
| 0.040 | 0.981558 | 0.951575 | 0.922508 | 0.894328 | 0.86701 | 0.840525 |
| 0.045 | 0.969753 | 0.921361 | 0.875384 | 0.831702 | 0.790199 | 0.750767 |
| 0.050 | 0.950558 | 0.873528 | 0.80274 | 0.737688 | 0.677908 | 0.622973 |
| 0.055 | 0.91963 | 0.799776 | 0.695543 | 0.604894 | 0.526059 | 0.457499 |
| P | $\mathrm{C}=6$ |  |  |  |  |  |
| 0.010 | 0.999198 | 0.997658 | 0.99612 | 0.994584 | 0.993051 | 0.99152 |
| 0.015 | 0.998678 | 0.996141 | 0.993611 | 0.991086 | 0.988569 | 0.986057 |
| 0.020 | 0.997822 | 0.993645 | 0.989487 | 0.985346 | 0.981222 | 0.977115 |
| 0.025 | 0.99641 | 0.989544 | 0.982724 | 0.975951 | 0.969226 | 0.962546 |
| 0.030 | 0.994088 | 0.982816 | 0.971672 | 0.960654 | 0.949761 | 0.938992 |
| 0.035 | 0.990268 | 0.971818 | 0.953712 | 0.935943 | 0.918505 | 0.901392 |
| 0.040 | 0.983998 | 0.95394 | 0.9248 | 0.896551 | 0.869164 | 0.842614 |
| 0.045 | 0.973733 | 0.925142 | 0.878977 | 0.835115 | 0.793441 | 0.753848 |
| 0.050 | 0.957007 | 0.879454 | 0.808186 | 0.742693 | 0.682507 | 0.627199 |
| 0.055 | 0.929961 | 0.808761 | 0.703356 | 0.611689 | 0.531969 | 0.462638 |

The following figure -1 shows the OC Curve for the acceptance number $\mathrm{c}=0, \mathrm{~s}=20, \mathrm{~m}=50, \mathrm{r}=1,2,3,4,5,6$ and sample size $\mathrm{n}=50$, $100,150,200,250$ and 300.


Fig 1: OC Curve for Laplace Distribution using QRSS

It shows the impact of expanded example size on OC bend. We note that each plan utilizes the equivalent percent blemished which can be considered an acknowledgment part, the OC bend becomes more extreme and lies nearer to the beginning as the example size increments.

She Average Sample Number (ASN) is portrayed as the typical (expected) number of test units per lot, as most would consider to be normal to appear at a decision about the affirmation or excusal of the part under the affirmation examining plan. The bend drawn between the ASN and the lot quality ( p ) is known as the ASN bend.

## Average Sample Number (ASN)



Fig 2: ASN Curve for Laplace Distribution using QRSS

In this research, ASN values $(\mathrm{n}=50,100,150,200,250$ and 300) of single sampling plan under Laplace distribution are same.

## Average Outgoing Quality (AOQ)

A normal methodology, while examining and testing is nonsad, is to 100 percent survey excused lots and overrides all defectives with extraordinary units. For this present circumstance, all excused parts are made wonderful and the fundamental deformations left are those in parcels that were acknowledged. AOQ's suggest the somewhat long defect level for this united LASP (lot acknowledgment inspecting plan) and 100 percent assessment of excused parts process. If all parts come in with a distortion level of exactly $p$, and the OC
bend for the picked ( $\mathrm{n}, \mathrm{c}$ ) LASP exhibits a likelihood Dad of enduring such a ton, from now onward, indefinitely a truly lengthy time span the AOQ can without a doubt be shown to be:

$$
\begin{equation*}
\mathrm{AOQ}=\frac{P a(p)(N-n)}{N} \tag{8}
\end{equation*}
$$

Where N is the lot size have given expressions for AOQ to different policies adopted for single sampling attribute plans. In this research, AOQ is approximated as $\mathrm{p} * \mathrm{~Pa}(\mathrm{p})$.
The given table shows the AOQ values for QRSS using Laplace distribution for $\mathrm{N}=1000, \mathrm{~m}=50, \mathrm{~s}=20, \mathrm{r}=1,2,3,4,5$, 6 and $\mathrm{n}=50,100,150,200,250$ and 300.

Table 2: The AOQ Values for Laplace Distribution using QRSS

| $\mathbf{N}$ | $\mathbf{1 m}$ | $\mathbf{2 m}$ | $\mathbf{3 m}$ | $\mathbf{4 m}$ | $\mathbf{5 m}$ | $\mathbf{6 m}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}$ | $\mathbf{C = 0}$ |  |  |  |  |  |  |
| 0.010 | 0.948536 | 0.897227 | 0.846075 | 0.795079 | 0.744237 | 0.69355 |  |
| 0.015 | 0.947587 | 0.895433 | 0.843538 | 0.791902 | 0.740522 | 0.689398 |  |
| 0.020 | 0.946024 | 0.892482 | 0.839372 | 0.786691 | 0.734436 | 0.682605 |  |
| 0.025 | 0.943453 | 0.887638 | 0.832547 | 0.778174 | 0.72451 | 0.671549 |  |


| 0.030 | 0.939228 | 0.879706 | 0.821412 | 0.764328 | 0.708432 | 0.653706 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.035 | 0.9323 | 0.866776 | 0.80337 | 0.742025 | 0.682688 | 0.625304 |
| 0.040 | 0.920981 | 0.845856 | 0.774461 | 0.706639 | 0.642238 | 0.581112 |
| 0.045 | 0.902594 | 0.812419 | 0.728996 | 0.651876 | 0.580637 | 0.514885 |
| 0.050 | 0.873015 | 0.760044 | 0.659649 | 0.570535 | 0.491532 | 0.421586 |
| 0.055 | 0.826188 | 0.680696 | 0.559094 | 0.457627 | 0.373111 | 0.302852 |
| P | $\mathrm{C}=1$ |  |  |  |  |  |
| 0.010 | 0.948653 | 0.897338 | 0.84618 | 0.795177 | 0.744329 | 0.693636 |
| 0.015 | 0.947779 | 0.895615 | 0.84371 | 0.792063 | 0.740673 | 0.689538 |
| 0.020 | 0.946342 | 0.892782 | 0.839654 | 0.786955 | 0.734683 | $0.68283] 4$ |
| 0.025 | 0.943975 | 0.888129 | 0.833008 | 0.778604 | 0.724911 | 0.671921 |
| 0.030 | 0.940085 | 0.880509 | 0.822162 | 0.765025 | 0.709079 | 0.654303 |
| 0.035 | 0.933704 | 0.868081 | 0.804579 | 0.743142 | 0.683716 | 0.626245 |
| 0.040 | 0.923269 | 0.847958 | 0.776386 | 0.708395 | 0.643834 | 0.582556 |
| 0.045 | 0.906298 | 0.815753 | 0.731988 | 0.654551 | 0.58302 | 0.516998 |
| 0.050 | 0.878937 | 0.7652 | 0.664124 | 0.574405 | 0.494866 | 0.424446 |
| 0.055 | 0.835469 | 0.688343 | 0.565375 | 0.462768 | 0.377302 | 0.306254 |
| P | C=2 |  |  |  |  |  |
| 0.010 | 0.94877 | 0.897449 | 0.846075 | 0.795275 | 0.744421 | 0.693722 |
| 0.015 | 0.947972 | 0.895798 | 0.843882 | 0.792224 | 0.740823 | 0.689679 |
| 0.020 | 0.946659 | 0.893081 | 0.839936 | 0.787219 | 0.734929 | 0.683063 |
| 0.025 | 0.944497 | 0.888621 | 0.833469 | 0.779035 | 0.725312 | 0.672293 |
| 0.030 | 0.940943 | 0.881312 | 0.822912 | 0.765724 | 0.709726 | 0.6549 |
| 0.035 | 0.93511 | 0.869388 | 0.805791 | 0.744261 | 0.684745 | 0.627188 |
| 0.040 | 0.925564 | 0.850065 | 0.778315 | 0.710155 | 0.645434 | 0.584003 |
| 0.045 | 0.910017 | 0.8191 | 0.734991 | 0.657237 | 0.585413 | 0.51912 |
| 0.050 | 0.8849 | 0.77039 | 0.668629 | 0.578302 | 0.498223 | 0.427325 |
| 0.055 | 0.844855 | 0.696075 | 0.571726 | 0.467966 | 0.381541 | 0.309694 |


| N | 1m | 2m | 3m | 4m | 5m | 6m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | $\mathrm{C}=3$ |  |  |  |  |  |
| 0.010 | 0.948887 | 0.89756 | 0.846388 | 0.795373 | 0.744513 | 0.693807 |
| 0.015 | 0.948165 | 0.89598 | 0.844054 | 0.792385 | 0.740974 | 0.689819 |
| 0.020 | 0.946977 | 0.893381 | 0.840218 | 0.787483 | 0.735176 | 0.683292 |
| 0.025 | 0.94502 | 0.889112 | 0.83393 | 0.779466 | 0.725714 | 0.672665 |
| 0.030 | 0.941802 | 0.882117 | 0.823663 | 0.766423 | 0.710374 | 0.655498 |
| 0.035 | 0.936518 | 0.870697 | 0.807004 | 0.745382 | 0.685776 | 0.628133 |
| 0.040 | 0.927863 | 0.852177 | 0.780249 | 0.71192 | 0.647038 | 0.585455 |
| 0.045 | 0.913751 | 0.822461 | 0.738007 | 0.659934 | 0.587815 | 0.52125 |
| 0.050 | 0.890902 | 0.775617 | 0.673165 | 0.582225 | 0.501603 | 0.430224 |
| 0.055 | 0.854346 | 0.703895 | 0.578149 | 0.473223 | 0.385827 | 0.313173 |
| P | $\mathrm{C}=4$ |  |  |  |  |  |
| 0.010 | 0.949004 | 0.89767 | 0.846493 | 0.795471 | 0.744605 | 0.693893 |
| 0.015 | 0.948358 | 0.896162 | 0.844225 | 0.792547 | 0.741125 | 0.689959 |
| 0.020 | 0.947295 | 0.893681 | 0.8405 | 0.787748 | 0.735423 | 0.683522 |
| 0.025 | 0.945543 | 0.889604 | 0.834392 | 0.779898 | 0.726115 | 0.673037 |
| 0.030 | 0.942662 | 0.882922 | 0.824415 | 0.767122 | 0.711022 | 0.656096 |
| 0.035 | 0.937928 | 0.872008 | 0.808219 | 0.746504 | 0.686809 | 0.629078 |
| 0.040 | 0.930169 | 0.854295 | 0.782188 | 0.713689 | 0.648645 | 0.586909 |
| 0.045 | 0.917501 | 0.825836 | 0.741036 | 0.662642 | 0.590227 | 0.523389 |
| 0.050 | 0.896946 | 0.780878 | 0.677732 | 0.586174 | 0.505006 | 0.433143 |
| 0.055 | 0.863943 | 0.711802 | 0.584644 | 0.478539 | 0.390161 | 0.316691 |
| P | $\mathrm{C}=5$ |  |  |  |  |  |
| 0.010 | 0.949121 | 0.897781 | 0.846597 | 0.795569 | 0.744696 | 0.693979 |
| 0.015 | 0.948551 | 0.896345 | 0.844397 | 0.792708 | 0.741276 | 0.6901 |
| 0.020 | 0.947612 | 0.893981 | 0.840782 | 0.788012 | 0.735669 | 0.683751 |
| 0.025 | 0.946066 | 0.890097 | 0.834853 | 0.780329 | 0.726517 | 0.67341 |
| 0.030 | 0.943522 | 0.883728 | 0.825168 | 0.767822 | 0.711671 | 0.656695 |
| 0.035 | 0.93934 | 0.873321 | 0.809436 | 0.747628 | 0.687843 | 0.630026 |
| 0.040 | 0.932481 | 0.856418 | 0.784132 | 0.715463 | 0.650257 | 0.588368 |
| 0.045 | 0.921266 | 0.829225 | 0.744077 | 0.665361 | 0.592649 | 0.525537 |
| 0.050 | 0.903031 | 0.786175 | 0.682329 | 0.590151 | 0.508431 | 0.436081 |
| 0.055 | 0.873649 | 0.719799 | 0.591211 | 0.483915 | 0.394544 | 0.320249 |
| P | $\mathrm{C}=6$ |  |  |  |  |  |
| 0.010 | 0.949238 | 0.897892 | 0.846702 | 0.795667 | 0.744788 | 0.694064 |
| 0.015 | 0.948744 | 0.896527 | 0.844569 | 0.792869 | 0.741427 | 0.69024 |
| 0.020 | 0.94793 | 0.894281 | 0.841064 | 0.788276 | 0.735916 | 0.683981 |
| 0.025 | 0.94659 | 0.890589 | 0.835315 | 0.780761 | 0.726919 | 0.673782 |
| 0.030 | 0.944383 | 0.884534 | 0.825921 | 0.768523 | 0.712321 | 0.657294 |


| 0.035 | 0.940755 | 0.874636 | 0.810655 | 0.748754 | 0.688879 | 0.630974 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.040 | 0.934798 | 0.858546 | 0.78608 | 0.717241 | 0.651873 | 0.58983 |
| 0.045 | 0.925046 | 0.832628 | 0.74713 | 0.668092 | 0.595081 | 0.527693 |
| 0.050 | 0.909156 | 0.791508 | 0.686958 | 0.594154 | 0.51188 | 0.439039 |
| 0.055 | 0.883463 | 0.727885 | 0.597853 | 0.489351 | 0.398977 | 0.323847 |

The following figure-3 shows the AOQ Curve for the acceptance number $\mathrm{c}=0, \mathrm{~s}=20, \mathrm{~m}=50, \mathrm{r}=1,2,3,4,5,6$ and sample size $n=50,100,150,200,250$ and 300 .


For the acceptance sampling plan in which correction isn't finished, the AOQ is equivalent to the approaching quality. Hence when the part is either acknowledged or dismissed, the AOQ is equivalent to the nature of the submitted lot.

## Average Total Inspection (ATI)

At the point when dismissed lots are 100 per cent investigated, it is not difficult to work out the ATI if lots come reliably with a deformity level of ' p '. For a LASP (n, c) with a probability Pa of tolerating a lot with deformity level p , one can have
$\mathrm{ATI}=\mathrm{n}+(1-\mathrm{Pa})(\mathrm{N}-\mathrm{n})$
Where N is the lot size, n is the sample size.
Table 3 shows the ATI values for QRSS using Laplace distribution for $\mathrm{N}=1000, \mathrm{~m}=50, \mathrm{~s}=20, \mathrm{r}=1,2,3,4,5,6$ and $\mathrm{n}=50,100,150,200,250$ and 300.

Fig 3: AOQ Curve for Laplace Distribution using QRSS

Table 3: The ATI Values for Laplace Distribution using QRSS

| n | 1m | 2m | 3m | 4m | 5m | 6m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | C=0 |  |  |  |  |  |
| 0.010 | 51.46445 | 102.7726 | 153.9248 | 204.9215 | 255.7629 | 306.4495 |
| 0.015 | 52.41336 | 104.5669 | 156.4615 | 208.0983 | 259.4782 | 310.6021 |
| 0.020 | 53.97594 | 107.5176 | 160.6277 | 213.3088 | 265.5637 | 317.395 |
| 0.025 | 56.54703 | 112.3622 | 167.4528 | 221.8262 | 275.4898 | 328.4506 |
| 0.030 | 60.772 | 120.2944 | 178.5877 | 235.6721 | 291.5676 | 346.2938 |
| 0.035 | 67.69981 | 133.2241 | 196.6303 | 257.9748 | 317.3123 | 374.6962 |
| 0.040 | 79.01927 | 154.1441 | 225.5387 | 293.3608 | 357.7621 | 418.8882 |
| 0.045 | 97.40615 | 187.5811 | 271.0039 | 348.1239 | 419.3625 | 485.1145 |
| 0.050 | 126.9851 | 239.9562 | 340.3508 | 429.4651 | 508.4683 | 578.4139 |
| 0.055 | 173.8119 | 319.3041 | 440.9059 | 542.3734 | 626.8891 | 697.1483 |
| P | $\mathrm{C}=1$ |  |  |  |  |  |
| 0.010 | 51.34738 | 102.6619 | 153.8204 | 204.8234 | 255.6711 | 306.3639 |
| 0.015 | 52.22052 | 104.3846 | 156.2899 | 207.9371 | 259.3274 | 310.4618 |
| 0.020 | 53.65848 | 107.2181 | 160.346 | 213.0448 | 265.3172 | 317.1659 |
| 0.025 | 56.02493 | 111.8709 | 166.9921 | 221.3956 | 275.0888 | 328.079 |
| 0.030 | 59.91475 | 119.4915 | 177.838 | 234.9745 | 290.921 | 345.6972 |
| 0.035 | 66.29604 | 131.919 | 195.4207 | 256.8575 | 316.2843 | 373.7547 |
| 0.040 | 76.73071 | 152.0422 | 223.6142 | 291.6048 | 356.1661 | 417.4442 |
| 0.045 | 93.70232 | 184.2473 | 268.0124 | 345.4489 | 416.9798 | 483.0017 |
| 0.050 | 121.0629 | 234.8004 | 335.8759 | 425.5948 | 505.134 | 575.554 |
| 0.055 | 164.5307 | 311.6573 | 434.6252 | 537.2325 | 622.6977 | 693.7462 |
| P | $\mathrm{C}=2$ |  |  |  |  |  |
| 0.010 | 51.23029 | 102.5511 | 153.9248 | 204.7252 | 255.5792 | 306.2783 |
| 0.015 | 52.02764 | 104.2024 | 156.1182 | 207.7759 | 259.1767 | 310.3214 |
| 0.020 | 53.34091 | 106.9185 | 160.0642 | 212.7807 | 265.0707 | 316.9368 |
| 0.025 | 55.50255 | 111.3795 | 166.5311 | 220.9647 | 274.6877 | 327.7072 |
| 0.030 | 59.05673 | 118.6878 | 177.0876 | 234.2763 | 290.2739 | 345.1 |
| 0.035 | 64.89016 | 130.6119 | 194.2092 | 255.7386 | 315.2549 | 372.8118 |
| 0.040 | 74.43647 | 149.9351 | 221.6849 | 289.8445 | 354.5663 | 415.9966 |
| 0.045 | 89.98329 | 180.8998 | 265.0087 | 342.7629 | 414.5874 | 480.8802 |
| 0.050 | 115.1005 | 229.6095 | 331.3707 | 421.6983 | 501.777 | 572.6747 |
| 0.055 | 155.1452 | 303.9246 | 428.2739 | 532.0339 | 618.4592 | 690.3058 |


| $\mathbf{N}$ | $\mathbf{1 m}$ | $\mathbf{2 m}$ | $\mathbf{3 m}$ | $\mathbf{4 m}$ | $\mathbf{5 m}$ | $\mathbf{6 m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}$ | 51.11319 | 102.4404 | 153.6115 | $\mathbf{C = 3}$ |  |  |
| 0.010 | 51.83471 | 104.0201 | 155.9464 | 204.6271 | 255.4873 | 306.1927 |
| 0.015 |  |  | 259.0259 | 310.1811 |  |  |


| 0.020 | 53.02324 | 106.6188 | 159.7824 | 212.5166 | 264.8241 | 316.7075 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.025 | 54.97987 | 110.8877 | 166.0698 | 220.5336 | 274.2863 | 327.3351 |
| 0.030 | 58.19791 | 117.8834 | 176.3365 | 233.5774 | 289.6261 | 344.5022 |
| 0.035 | 63.48217 | 129.3029 | 192.996 | 254.6179 | 314.2239 | 371.8674 |
| 0.040 | 72.13652 | 147.8228 | 219.7509 | 288.0799 | 352.9624 | 414.5454 |
| 0.045 | 86.249 | 177.5386 | 261.9926 | 340.0659 | 412.1851 | 478.7499 |
| 0.050 | 109.0976 | 224.3834 | 326.835 | 417.7753 | 498.3972 | 569.7758 |
| 0.055 | 145.6543 | 296.105 | 421.8512 | 526.7768 | 614.173 | 686.8267 |
| P | $\mathrm{C}=4$ |  |  |  |  |  |
| 0.010 | 50.99607 | 102.3296 | 153.5071 | 204.5289 | 255.3954 | 306.107 |
| 0.015 | 51.64175 | 103.8377 | 155.7746 | 207.4535 | 258.8752 | 310.0407 |
| 0.020 | 52.70546 | 106.319 | 159.5004 | 212.2523 | 264.5774 | 316.4782 |
| 0.025 | 54.4569 | 110.3957 | 165.6083 | 220.1023 | 273.8847 | 326.9629 |
| 0.030 | 57.33832 | 117.0783 | 175.5847 | 232.8779 | 288.9777 | 343.904 |
| 0.035 | 62.07205 | 127.9918 | 191.7809 | 253.4956 | 313.1913 | 370.9216 |
| 0.040 | 69.83087 | 145.7052 | 217.812 | 286.3108 | 351.3546 | 413.0906 |
| 0.045 | 82.49938 | 174.1636 | 258.9642 | 337.3579 | 409.773 | 476.611 |
| 0.050 | 103.054 | 219.1219 | 322.2685 | 413.8257 | 494.9945 | 566.8573 |
| 0.055 | 136.0567 | 288.1976 | 415.3564 | 521.4607 | 609.8387 | 683.3086 |
| P | $\mathrm{C}=5$ |  |  |  |  |  |
| 0.010 | 50.87894 | 102.2188 | 153.4026 | 204.4307 | 255.3035 | 306.0214 |
| 0.015 | 51.44875 | 103.6554 | 155.6028 | 207.2922 | 258.7243 | 309.9003 |
| 0.020 | 52.38757 | 106.0191 | 159.2184 | 211.988 | 264.3306 | 316.2489 |
| 0.025 | 53.93365 | 109.9034 | 165.1466 | 219.6707 | 273.4829 | 326.5904 |
| 0.030 | 56.47794 | 116.2725 | 174.8323 | 232.1777 | 288.3288 | 343.3051 |
| 0.035 | 60.65981 | 126.6789 | 190.5639 | 252.3716 | 312.1571 | 369.9744 |
| 0.040 | 67.51948 | 143.5823 | 215.8684 | 284.5373 | 349.7428 | 411.6322 |
| 0.045 | 78.73438 | 170.7747 | 255.9233 | 334.6387 | 407.351 | 474.4632 |
| 0.050 | 96.96947 | 213.8247 | 317.671 | 409.8493 | 491.5687 | 563.9191 |
| 0.055 | 126.3514 | 280.2014 | 408.7886 | 516.0849 | 605.4557 | 679.7509 |
| P | $\mathrm{C}=6$ |  |  |  |  |  |
| 0.010 | 50.7618 | 102.108 | 153.2981 | 204.3325 | 255.2116 | 305.9358 |
| 0.015 | 51.25571 | 103.4729 | 155.431 | 207.1308 | 258.5735 | 309.7598 |
| 0.020 | 52.06957 | 105.7191 | 158.9362 | 211.7235 | 264.0837 | 316.0194 |
| 0.025 | 53.41011 | 109.4108 | 164.6846 | 219.2388 | 273.0808 | 326.2178 |
| 0.030 | 55.61677 | 115.4659 | 174.0791 | 231.4769 | 287.6792 | 342.7058 |
| 0.035 | 59.24544 | 125.3639 | 189.3451 | 251.2459 | 311.1215 | 369.0258 |
| 0.040 | 65.20235 | 141.4542 | 213.9199 | 282.7595 | 348.1269 | 410.1701 |
| 0.045 | 74.95393 | 167.372 | 252.8699 | 331.9084 | 404.919 | 472.3067 |
| 0.050 | 90.84362 | 208.4916 | 313.0423 | 405.8459 | 488.1197 | 560.9608 |
| 0.055 | 116.537 | 272.1153 | 402.1471 | 510.6487 | 601.0235 | 676.1533 |

The following figure-4 shows the ATI Curve for the acceptance number $\mathrm{c}=0, \mathrm{~s}=20, \mathrm{~m}=50, \mathrm{r}=1,2,3,4,5,6$ and sample size $n=50,100,150,200,250$ and 300.


Fig 4: ATI Curve for Laplace Distribution using QRSS
The curve drawn between ATI and the lot quality (p) is known as ATI curve. A typical ATI curve for a single sample plan is shown for $\mathrm{N}=1000, \mathrm{n}=50,100,150,200,250$ and 300.

## Illustration

A manufacturer of laptop bags produces laptop bags in lots (N) of 1000 by using QRSS method, distributed by Laplace distribution. Then, the scale parameter (s) is 20 , sample set size (m) is 50 and the cycle size (r) is 3. The quality of incoming lot is 0.040 and the acceptance numbers are 0 and 1 .

## Explanation

It is given, sample size of bags $m=50$ and sample cycle size $r$ $=3$ (specified by the producer). Hence, $n=m * r(150=50 * 3)$. For a fixed lot quality $\mathrm{p}=0.040$, the value of the parameter (s) is 20 . Then $[\mathrm{m}, \mathrm{r}]_{i j}$ is the $(\mathrm{m}, \mathrm{r})^{t h}$ judgment order statistics of the $i^{\text {th }}$ random sample of size $m$ in the $j^{t h}$ cycle. In a sample of $\mathrm{n}=150$ specimens selected from a lot of laptop bags manufacturing company, if $\mathrm{X} \leq \mathrm{c}$, the lot is accepted, otherwise reject the lot and inform the management for further action. If X represents the number of defective laptop bags in the sample, if $\mathrm{X}=0$ the probability of accepting the lot $\mathrm{Pa}(\mathrm{p})$ is 0.91113 , ASN is 150 , AOQ is 0.774461 , ATI is 226 (225.5 is equivalent to 226). If $X=1$ the probability of accepting the lot $\mathrm{Pa}(\mathrm{p})$ is 0.913395 , ASN is 150 , AOQ is 0.776386 , ATI is 224.

## Conclusion

In this study, QRSS procedure is considered for Construction of Acceptance Sampling Plans by Quartile Ranked Set

Sampling using Laplace Distribution. The QRSS is compared with RSS and SRS in estimating the distribution function. It is found that QRSS is more efficient than SRS and also it is more efficient than RSS in most cases considered in this study.
In this paper, another QRSS technique is recommended for considering Operating Characteristic Curve, Average Sample Number, Average Outgoing Quality and Average Total Inspection. It is more effective than basic arbitrary testing on the grounds that fewer samples should be gathered and estimated.
This study can be extended further for the various parameters such as AQL, LQL, IQL, AOQL, MAPD and MAAOQL. Further it can be extended to Double Sampling Plan, Multistage Sampling Plan, other Special Purpose Plans as Chain Sampling, Skip Plot Sampling Plans as well.

## Reference

1. Muttlak HA. Investigating the use of quartile ranked set samples for estimating the population mean, Journal of Applied Mathematics and Computation. 2003;146:437443.
2. Adatia A, Saleh AK. Md. Estimation of quantiles of uniform distribution using generalized ranked set sampling. Pakistan Journal of Statistics. 2004;20:355368.
3. Chen Z. On ranked-set sample quantiles and their applications. Journal of Statistical Planning and Inference. 2000;83:125-135.
4. Jemain AA, AL-Omari AI. Double quartile ranked set samples. Pakistan Journal of Statistics. 2006b;22:217228.
5. Jemain AA, AL-Omari AI. Multistage quartile ranked set samples. Pakistan Journal of Statistics. 2007b;23:11-22.
6. Zhu M, Wang Y. Quantile estimation from ranked set sampling data. Sankhya: The Indian Journal of Statistics. 2004;67:295-304.
7. McIntyre GA. A method for unbiased selective sampling, using ranked sets. Australian journal of agricultural research. 1952;3(4):385-90.
8. Takahasi K, Wakimoto K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the institute of statistical mathematics. 1968 Dec 1;20(1):1-31.
9. Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J, et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. The Journal of clinical investigation. 1996 Sep 15;98(6):1277-82.
