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Abstract 
The prevalence of head and neck squamous cell carcinoma (HNSCC) and its recurrences is not declining 
in Ghana as a result of the disease's delayed diagnosis and dismal prognosis. Early detection and 
treatment are crucial since HNSCC recurrence and tumor stage at diagnosis are significantly correlated. 
This study looked at the best meta-classifier model where the same ML classifiers for base classifiers and 
meta classifiers are employed in order to determine the most reliable prediction and robust prognostic 
model for recurrent HNSCC. Based on gradient boosted features (GBF), the suggested model was an 
ensemble of ML models that were stacked. Each of these models served as a meta-classifier and as a 
building block for the base classifiers. To find the optimal meta-classifier model, the performances of 
different meta-models were compared. The findings demonstrated that utilising the GBM as a meta-
classifier produced superior accuracy with the least log loss compared to that produced by any other 
model of recurrent HNSCC prognostic data. This gave a stacked ensemble model termed as a HESCA 
model, consisted of five base models and GBM meta-model. 8-input HESCA model was compared with 
full-input model, and 8-input HESCA model was also compared with 8-input models. The results of the 
study demonstrated that using a GBM classifier as a meta-classifier in a stacking ensemble with five base 
classifiers based on GBF or GBM input features outperformed standalone models and any full-input 
model. Additionally, using a GBM as a meta-classifier is appropriate as a supporting tool for identifying, 
classifying, and predicting recurrent HNSCC prognosis data. 
 
Keywords: Recurrent HNSCC prognosis, ensemble learning, stacked ensemble, classification 
 
Introduction 
According to [8], the number of cancer cases, particularly Head and Neck Squamous Cell 
Carcinomas (HNSCCs) and their recurrences, is not declining in Ghana as a result of people 
delaying their visits to medical institutions until they exhibit cancer signs and symptoms. Most 
of these patients turn to have tumors at the advanced or metastatic stage at diagnosis. Based on 
the research by [20] that recurrent cancer is strongly linked to the stage of the tumor at 
diagnosis, most of these patients have about 60-90% probability of experiencing cancer 
recurrence even after a successful treatment where cancer had reached its remission. That is, 
early diagnosis and treatment can help reduce cancer recurrence by identifying accurate 
prognostic markers [8, 6, 22]. Many prognostic models based on clinical and histopathologic 
parameters for recurrent HNSCC have been researched and developed, not from a medical 
perspective but from a scientific point of view in various fields using Statistics, Artificial 
Intelligence (AI), and ML techniques, attempting to address the challenge of the patient's 
disease recurrence [5, 10]. They include: [22] used the Kaplan-Meier analysis and the Log-rank 
test to determine if patients at KBTH would survive nasopharyngeal carcinoma. Using simple 
descriptive analysis using the International Classification of Diseases coding system [16], 
reclassified sociodemographic, clinical, and pathological data on patients with HNC at KATH. 
At KBTH [1], reclassified patients with oral cavity and oropharynx Squamous Cell Carcinoma 
(SCC) using the ICD-10, the 10th revision of the International Statistical Classification of 
Diseases and Related Health Problems. In order to estimate the number of cases [14], 
additionally examined epidemiological (clinical and histopathologic) characteristics for 
laryngeal cancer in SCC patients at KBTH [9]. Used AI/ML algorithms to categorize tumors as 
malignant or benign in a study on breast cancer. When attempting to forecast the labels of 
upcoming, unobserved data, statistical and standalone ML approaches fall short [4, 2]. Finding a 
classifier that performs well when predicting the labels of future, ambiguous data is the aim of 
classification [21]. 
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 Usually, in cancer diagnosis and prognosis; clinical data, 

pathological data, genomic data, and socio-demographic data 
are integrated in the prognostic model for robust prognosis [6, 

9]. Now, given the rapid development of these medical 
information and the growing trend and reliance on the 
application of machine learning techniques in cancer domain, 
it is worthwhile that if these information on patients are 
combined [7, 10] under some variant studies such as ensemble 
ML techniques [4, 2], more accurate prognosis can be generated 
for early diagnosis and treatment outcomes [15, 17]. A single 
classification model that has good generalization ability is 
difficult to qualify as a strong classifier, but ensemble 
learning can turn a collection of weak classifiers into a strong 
one by combining them to produce one with good 
generalization ability [21]. A decent generalized classification 
model should be broad enough to account for cases that 
haven't been observed before rather than overfitting the 
training set. This way, to achieve a good generalization ability 
of a classification model, stacking or stacked generalization [4, 

2, 12, 13, 21] with feature selection, is the best way to go. There 
are very few studies that used stacking ensemble techniques 
in the prognosis of HNSCC.  
Also, in order to obtain the most promising prognostic 
classification model, one needs to combine single base 
classifiers and weak ensemble classifiers. Currently, many 
studies on HNC had focused on stacking ensemble techniques 
having only single base classifiers (without integrating 
standalone ensemble classifiers) in the domain of various 
cancer studies. To classify the prognosis of recurrent breast 
cancer, for example [2], constructed a stacked ensemble-based 
model (with 10-fold CV) using two single base classifiers in 
combination of DT and SVM, NB and SVM, and NB and DT, 
where DT, NB, and SVM were employed as meta-classifiers, 
respectively [4]. Developed a stacked ensemble model with 
three single base classifiers, KNN, NB, and DT (C4.5), and 
GLM as a meta-learner, able to predict the cancer kinds in the 
vicinity of the HNC regions (Sinonasal, nasopharyngeal, 
laryngeal, and thyroid). In order to promote quick referral [3], 
used the same technique (KNN, NB, and DT (C4.5) as base 
learners, and GLM as a meta-learner) to diagnose HNC 
susceptibility. These studies' prognostic models might not 
have strong generalizability for predicting the prognosis for 
HNC. While bagging, boosting, and stacking are three major 
meta-algorithms that offer effective methods of combining 
base learners, stacking is the most effective method, 
especially when it combines single base learners and 
standalone ensemble learners. This has been demonstrated by 
[12] in various healthcare datasets (Wisconsin Breast Cancer, 
Pima Indian Diabetes Dataset, Indian Liver Patient Dataset, 
[13] in breast cancer, and) [21]. In Ghana, based on the 
literature, there has not been any study yet on any form of 
stacked ensemble ML algorithms on genomic and 
clinicopathologic makers for recurrent HNSCC prognosis [8] 
that is prone to provide unbiased, stable, and reliable 
prognostic outcomes [22]. Therefore, due to this medical gap in 
cancer predictive foci, this study seeks to investigate how 
stacked ensemble ML techniques can be employed in the 
recurrent HNSCC prognosis in the developing country Ghana, 
to address the issue of poor and contradictory prognosis 
produced by biased, unstable, and unreliable prognostic 
models in existence; in order to identify, classify and 
prognosticate the most stable and accurate prognosis for 
recurrent HNSCC patients, being the first study ever. This 
method is an organized effort to develop a Hybrid Ensemble 
Super Classification Algorithm (HESCA) prognostic model 

using a stacked generalization of various supervised machine 
learning techniques with an ensemble feature selection 
method in Ghana. In addition to developing a hybrid stacked 
ensemble-based classification model that combines the best 
set of multiple base classifiers and the GBM feature selection 
method for the prognosis of HNSCC recurrence, a 
multifaceted complementary approach to the study's design is 
likely to simultaneously capture the most accurate prognosis. 
The current study, which, according to the reviewed literature, 
is the first study in Ghana, differs from the aforementioned 
studies in that it focuses on the prognosis of recurrent HNSCC 
using a stacked ensemble technique with five base classifiers 
(GBM, DRF, DNN, GLM, and NB) with GBM feature 
selection. The homogenous ensemble classifiers (GBM and 
DRF), and standalone single classifiers (DNN, GLM, and 
NB) as proposed by [13, 12] to be the most effective algorithms 
for stacked generalization for the classification and prediction 
of cancer cases, have been employed under this study. 
Furthermore, the system is tested using the data collected 
locally at KBTH; the National Centre for Radiotherapy and 
Nuclear Medicine (NCRNM), Radiotherapy and Oncology 
department. In order to compare the findings, the same 
proposed HESCA model was trained on both the original 
dataset and the best feature subset produced by the GBM 
feature selection technique. In addition, the results generated 
from the proposed HESCA model are compared with 
standalone models’ results using the same dataset provided by 
the GBM feature selection technique. Lastly, the proposed 
HESCA model is validated using the existing HNSCC test 
data.  
To this end, due to ever-increasing in the recurrent rate of 
HNSCC in the developing country, there is a need to develop 
a more robust computerized tool that is needed to aid 
clinicians in the decision support stage and to identify the 
most accurate prognosis so as to better prognosticate the rate 
of recurrence for each HNSCC patient and to extend the 
model to other cancer prognosis prediction for early diagnosis 
and treatment. The overall goal of the study is to create a 
stacked ensemble classification model that combines 
standalone ensemble classifiers and single base classifiers to 
provide a robust prognosis for early diagnosis and treatment 
outcomes based on the best feature subset of clinical, 
histopathologic (pathologic), and genomic markers, as well as 
other risk factors and treatment options related to HNSCC 
recurrence in Ghana. This is to improve early diagnosis and 
primary treatment of the malignant tumor that minimises its 
recurrence after it reaches remission.  
 
Ensemble Learning 
The term "ensemble learning" refers to a group (or ensemble) 
of base learners or models that collaborate to provide a 
reliable final prediction. Because of significant variation or 
high bias, an individual learner, sometimes referred to as a 
base or weak learner, might not do effectively on their own. 
The aggregation of weak learners, however, might result in 
the formation of a strong learner since it decreases biases or 
variances, which improves classifier performance [21]. 
Decision trees are frequently used to illustrate ensemble 
techniques, but they can be vulnerable to underfitting (low 
variance and high bias) when they are very small, such as 
decision stumps, which are decision trees with only one level, 
and overfitting (High variance and low bias) when pruning 
has not been done. It is important to note that a learner cannot 
generalize well to new or unexplored datasets when the 
training data is either overfitted or underfitted. Ensemble 
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 approaches are used to prevent this behavior and enable the 

learner to generalize to fresh training samples. Although 
decision trees can show strong bias or high variance, it is 
important to note that other modeling techniques also use 
ensemble learning to identify the "sweet spot" in the tradeoff 
between bias and variance. When learning the ensemble 
model, two primary methods are taken into account: 
Homogeneous ensemble learning, of which classifiers pool 
the predictions of multiple individual decision trees. This 
category of ensemble learning is broadly highlighted in two 
techniques; bagging and boosting. The second method, called 
heterogeneous ensemble learning, uses various basic classifier 
types to build a heterogeneous ensemble model that is 
employed in stacking. Generally speaking, three main meta-
algorithms offer efficient methods for integrating weak or 
base learners [18]: 
 
Bagging  
Bagging is also known as Bootstrap Aggregation, which is an 
ensemble ML technique that combines homogenous base 
learners into a more robust learner. With replacement idea of 
drawing dataset at random, and using these different random 
subsets of the data to train different classifiers is what is 
called bootstrapping. If this technique is used to combine 
individual classifiers (decision trees), this process is called 
bagging. So, bagging simply means, constructing each 
classifier or tree on a different random subset of the dataset 
drawn with replacement. The predictions from each 
independent classifier can be combined by averaging 
(Regression) or by majority voting (classification) to derive 
the final prediction. A widely used algorithm or technique is 
Random Forest (RF). 
 
Boosting  
Boosting is a homogeneous learning strategy that creates a 
strong learner out of a homogenous group of weak (decision 
tree) learners in order to reduce training error. In boosting, a 
randomly chosen sample of data is chosen, fitted with the 
learner, and then consecutively learned. In other words, each 
learner seeks to make up for the shortcomings of its elder. 
One strong prediction rule is created by combining the weak 
rules from each learner during each cycle. The three widely 
used methods of adaptive, gradient, and extreme gradient 
boosting (AdaBoost, Gradient Boost, and XGBoost) are the 
main emphasis of the strategies for boosting [18]. For the 
purpose of the study, Gradient Boost or GBM is discussed 
and used for feature selection. 
 
Stacking  
Stacking is a technique that combines heterogeneous multiple 
base learners into a more robust learner in their combination. 
This technique combines the predictions made by different 
individual learners into make a final bust prediction. A meta-
learner with less variance and bias can be created when base 
learning algorithms are properly integrated [18]. Cross-
validation is used by stacking to gauge the effectiveness of 
various base learning methods [11]. The meta-learning 
algorithm (s) are fed with the output from the base learners, 
also known as "meta-features" in the stacking literature [19]. A 

high-level classifier is learned through stacking on top of the 
base classifiers. It can be viewed as a meta-learning strategy 
in which the first-level classifiers, which serve as the 
foundational classifiers, are combined to learn a second-level 
classifier known as a meta-classifier [18]. 
 
Dataset and evaluation metrics 
Data Source 
A retrospective cohort analysis of 125 HNSCC patients under 
the age of 15 who had previously been diagnosed with the 
disease, received curative treatment at KBTH and were 
monitored until the cancer had gone into remission but then 
between 2016 and 2020 either experienced recurrence or 
nonrecurrence. Information on each patient's gender, age at 
diagnosis, alcohol consumption, smoking habits, habit of 
chewing tobacco, primary tumor site, tumor stage at 
diagnosis, histological grade, and tumor size is also included. 
invading the front's depth. The following factors are taken 
into account: cervical lymph nodes, pathological tumor 
staging, pathological lymph nodes, family history of cancer, 
human papillomavirus level, p16 type, p63 type, and kind of 
treatment. The features evaluated in this study are listed in 
Table 1. 
 

Table 1: Demographic, Clinicopathologic, and Genomic Features 
 

 Feature Name Description 
1 Gen Gender 
2 Age Age at diagnosis 
3 Alc Alcohol drinking habit 
4 Smoke Smoking habit 
5 Chew Quid/Tobacco chewing habit 
6 Site Primary site of tumor 
7 Stage Tumor stage at diagnosis 
8 Grade Histological grade 
9 Size Tumor size 

10 Inv Depth of invasion front 
11 Nodes Cervical lymph/Neck nodes 
12 PaT Pathological tumor staging 
13 PlN Pathological lymph nodes 
14 FHx Family history of cancer 
15 HPV Human papillomavirus type 
16 p16 p16 type 
17 p63 p63 type 
18 Treat Treatment type 

 
Data pre-processing  
A normalized predictive mode approach was used to identify 
and fill in the missing examples using mode imputation. This 
technique is feasible in this study as the size of training 
examples is very small in order to avoid the deletion of the 
instances having missing training examples under any feature. 
To provide a normalized dataset for training, evaluation, and 
prediction, one-hot encoding was employed for features with 
more than two levels during data discretization and 
transformation. As a result, the dataset's 35 features instead of 
the original 18 characteristics were to be taken into account 
for model learning. Table 2 describes features categorization 
into levels that were ready for ingestion into the process of 
feature selection prior to model training and evaluation. 
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 Table 2: Description of Features for 125 Instances 

 

Feature Description Levels Feature Description Levels 
Gen (x1) 

 
Male 

Female 
0 
1 

Inv (x10) 
 

Cohesive 
Non-cohesive 

0 
1 

Age (x2) 15-45 
> 45 

0 
1 

Node 
(x11) 

Positive 
Negative 

0 
1 

Alc (x3) Yes 
No 

0 
1 PaT (x12) 

T1 
T2 
T3 
T4 

0 
1 
2 
3 

Smoke (x4) Yes 
No 

0 
1 PlN (x13) 

N0 
N1 

N2 (N2a, N2b, N2c) 
N3 (N3a, N3b) 

0 
1 
2 
3 

Chew (x5) Yes 
No 

0 
1 FHx (x14) Yes 

No 
0 
1 

Site (x6) 

Larynx 
Nasopharynx 
Oropharynx 

Hypopharynx 

0 
1 
2 
3 

HPV (x15) High-risk (HPV16&18) 
Low-risk (HPV6&11) 

0 
1 

Stage (x7) 

I 
II 
III 
IV 

0 
1 
2 
3 

p16 (x16) Positive 
Negative 

0 
1 
 

Grade (x8) 
G1 
G2 
G3 

0 
1 
2 

p63 (x17) Positive 
Negative 

0 
1 

Size (x9) 0-4cm 
> 4cm 

0 
1 
 

Treat (x18) 

Surgery only 
Radiotherapy (RT) only 

Chemotherapy (Chemo) only 
Concurrent ChemoRT (CCRT) 

0 
1 
2 
3 

NB: Cohesive if depth of invasion ≤10mm, and Non-cohesive if depth of invasion >10mm. G1: Well differentiated, G2: Moderately 
differentiated, G3: Poorly differentiated, G4: Undifferentiated 

 
Performance metrics 
The performance metrics of a classification model based on 
GBF of recurrent HNSCC prognosis dataset, that are mostly 
used in cancer study to assess the model performance were 
utilized. These metrics are; accuracy, recall, precision, 
specificity, F1-score, and Area Under Receiver Operating 
Characteristic Curve (AUROC), including the logarithmic 
loss. 
 

Table 3: Confusion matrix for recurrent HNSCC prognosis 
 

Actual conditions 
  Recurrence (+) Nonrecurrence (-) 

Predicted 
outcomes 

Recurrence (+) TP FP 
Nonrecurrence (-) FN TN 

True positive (TP), False positive (FP), False negative (FN), 
True negative (TN) 
 
Accuracy = TP+TN

TP+TN+FN+FP
× 100% 

 
Specificity = TN

TN+FP
× 100% 

 
Precision (P) = TP

TP+FP
× 100%  

 
Recall (R) = TP

TP+FN
× 100%  

 

F1 − score = 2 ×
Recall × Precision
Recall + Precision

 
 
Binary Cross-Entropy/Logarithmic Loss 
The logarithmic loss (log loss) metric can be used to evaluate 
the performance of the binomial or multinomial classifier. 
Log loss is the negative average of the log of corrected 

predicted probabilities for each instance. It measures the 
uncertainty of the predicted labels based on how far it varies 
from the actual label. Log loss equation for binary 
classification is; 
 

Logloss = −
1
𝑁𝑁
�𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 ln(𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) ln(1 − 𝑝𝑝𝑖𝑖)) 

 
where N is the total number of rows (observations) of the 
corresponding data frame, w is the per row user-defined 
weight (default is 1), p is the predicted value assigned to a 
give row (observation) 
 
Proposed HESCA model development 
Figure 1 represents the architecture of the proposed HESCA 
model with full-input features in stacking ensemble. It has 35 
input features based on one-hot encoding. Figure 2 on the 
other hand, represents the architecture of the proposed 
HESCA model with 8-input features provided by GBFS 
technique. Base or standalone classifiers were initially trained 
based on optimal feature subset provided by GBM features. 
Next, 10-fold cross-validation was performed on each base 
classifier; each of which provided cross-validated predictions 
called meta-features as input for meta classifiers. These cross-
validated predicted labels along with the original class labels 
gave the level-one data to learn meta-classifiers. Then, each 
base classifier was used as meta classifier to learn meta-
models base on the level-one dataset. Now, based on the 
outputs of these meta classifiers, the best meta classifier was 
identified and its output served as the final prediction. This is 
the stacked ensemble model consisting of five base models 
and GBM meta model. Table 4 presents the hyperparameters 
via random grid search used to learn HESCA model 
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Fig 1: Architecture of HESCA model with full-input features using stacking 
 

 
 

Fig 2: Architecture of HESCA model with 8-input features using stacking 
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 Table 4: Classifiers with their corresponding hyper-parameter values 

 

Classifiers Hyper-parameters in grid search with the corresponding range of values Hyperparameters fixed values 

GBM 

Max depth = c (7, 9), 
Min rows = c (1, 3, 5), 

Learn rate = c (0.01, 0.1), 
Learn rate annealing =c (0.99, 1), 

Sample rate= c (0.5, 0.75, 1), 
Col sample rate =c (0.8, 0.9, 1) 

trees = 5000 
unfolds = 10 

fold assignment = "Modulo" 
keep cross validation predictions = TRUE 

stopping rounds = 50 

   

DRF 

Max depth = c (9, 30), 
entries = 3, 

min rows = c (1, 5, 10), 
sample rate = c (0.5, 0.75, 1), 

col sample rate per tree= (0.8, 0.9, 1) 

trees = 5000 
unfolds = 10 

fold assignment = "Modulo" 
keep cross-validation predictions = TRUE 

stopping rounds = 50 
   

DNN 

activation=c("Rectifier","Maxout", "Tanh"), 
hidden = list (c (5, 5, 5, 5), c (10, 10, 10, 10), c (50, 50, 50, 50), 

epochs = c (50, 100, 200), 
l1 = c (0, 1e-3, 1e-5), 
l2 = c (0, 1e-3, 1e-5), 

rate =c (0, 0.1, 0.005, 0.001), 
momentum start = c (0, 0.5), 

momentum stable=c (0.99, 0.5) 

epochs = 20 
unfolds = 10 

fold assignment = "Modulo" 
keep cross validation predictions = TRUE 

stopping rounds = 50 

   

NB Laplace=c(0, 5, by 0.5) 
unfolds = 10 

fold assignment = "Modulo" 
keep cross-validation predictions = TRUE 

   

GLM Alpha=c(0.1) 

unfolds = 10 
remove collinear columns = TRUE 

fold assignment = "Modulo" 
keep cross-validation predictions = TRUE 

 
Evaluation results and discussions 
Results 
Figure 2 shows that the ranking of features according to their 
importance in an ensemble by Gradient Boosted Feature 
Selection (GBFS). A minimum criterion of 60% was taken 

into account in order to produce the ideal feature subset; 
hence, features with rankings between 60% and 100% were 
possibly important. Nodes, Age, Smoke, Stage IV, p63, Treat 
CCRT, PaTT4, and Size are among these characteristics. 

 

 
 

Fig 3: Rank of features by Gradient Boosted Feature Selection (GBFS) 
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 Table 5: Performance metrics of Meta classifiers on level-one training set 

 

 Meta Classifiers  
Metrics GBM DRF DNN GLM NB 

Accuracy 0.9677 0.9139 0.9247 0.9355 0.9355 
Logloss 0.1172 0.3139 0.5123 0.2986 0.2038 
Recall 0.9000 0.8333 0.8400 0.9091 0.9091 

Specificity 1.0000 0.9420 0.9559 0.9437 0.9437 
Precision 1.0000 0.8333 0.8750 0.8333 0.8333 
F1-Score 0.9474 0.8333 0.8571 0.8696 0.8696 

AUC 0.9952 0.9134 0.9199 0.9834 0.9671 
 

Table 6: Performance metrics of Meta Classifiers on Test Set 
 

 Meta Classifiers  
Metrics GBM DRF DNN GLM NB 

Accuracy 0.9063 0.7813 0.8750 0.7813 0.8750 
Logloss 0.2959 0.5095 0.5854 0.4406 0.4208 
Recall 0.7500 0.5625 0.8571 0.5714 0.7273 

Specificity 1.0000 1.0000 0.8800 0.9444 0.9524 
Precision 1.0000 1.0000 0.6667 0.8889 0.8889 
F1-Score 0.8571 0.7200 0.7500 0.6957 0.7999 

AUC 0.9251 0.7149 0.8937 0.9179 0.8961 
 

Table 5 shows the performance of different training metrics of 
meta classifiers on the level-one training set considered in this 
study. The performances metrics of meta classifiers were 
obtained by learning each base classifier on the cross-
validated predicted labels along with the original class labels. 
Best results are obtained using stacked ensemble techniques. 
The GBM meta classifier had best accuracy (0.9677), log loss 
(0.1172), specificity (1.00), precision (1.00), F1-Score 
(0.9474), and AUC (0.9952) while GLM meta classifier had 
the best recall value (0.9091). Table 6 shows the evaluation 

performance of meta classifiers on test set. It can be observed 
that best results are obtained for GBM meta classifier with the 
highest accuracy value (0.9063), F1-Score (0.8571) and AUC 
value (0.9251) and the least log loss metric (0.2959) as 
compared to that of other meta classifiers. GBM and DNN 
meta classifiers both had the best specificity and precision 
metrics (1.00), and DNN meta classifier had the best recall 
metric (0.8571). The ROC curve analysis of each meta 
classifier on training set and test set is shown in Figure 4 and 
5 respectively. 
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Fig 4: ROC Curve Analysis of Meta Classifiers on Training set 
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Fig 5: ROC Curve Analysis of Meta Classifiers on Test set 
 

Table 7: Performance Comparison of HESCA model with full-input features and HESCA model with GBF 
 

Metrics 
Training set Testing set 

HESCA Model with full-input 
Training Set HESCA Model with GBF HESCA Model with full-input 

Test Set 
HESCA Model 

with GBF 
Accuracy 0.3441 0.9677 0.3438 0.9063 
Logloss 0.8025 0.1172 1.0435 0.2959 
Recall 0.3023 0.9000 0.3846 0.7500 

Specificity 0.8571 1.0000 0.1667 1.0000 
Precision 0.9629 1.0000 0.6667 1.0000 
F1-Score 0.4602 0.9474 0.4878 0.8571 

AUC 0.4879 0.9952 0.4364 0.9251 
 

Table 7 shows the performance of the HESCA model with 
full-input features and the HESCA model with GBF. The 
performance metrics on the training set were recorded to 
assess the performance of the model on the training set, and 
on and test set, to evaluate how well the model will perform 
on unseen labels. Based on accuracy and log loss, the best 
accuracy (0.9677) with the log loss (0.1172) and accuracy 
(0.9063) with the log loss (0.2959) on the training set and test 
set respectively are obtained for the HESCA model with GBF 
as compared to the accuracy (0.3441) with the log loss 
(0.8025) and accuracy (0.3438) with the log loss (1.0435) 
obtained on the training set and test set respectively for 
HESCA model with full-input features. AUC (0.9952) and 
(0.9251) obtained on the training set and test set respectively 
are for HESCA model with GBF compared to the AUC 
(0.4879) and (0.4364) obtained on the training set and test set 

respectively for HESCA model with full-input features. Based 
on the training set, the HESCA model with GBF had a recall 
value (0.9000), specificity value (1.00), precision value (1.00) 
and F1-Score (0.9474) as compared to the HESCA model 
with full input features that had recall value (0.3023), 
specificity value (0.8571), precision value (0.9630) and F1-
Score (0.4602). Similar to the test set, the HESCA model with 
GBF had a recall value (0.7500), specificity value (100%), 
precision value (1.00), and F1-Score (0.8571) compared to the 
HESCA model with full input features that had the recall 
value (0.3846), specificity value (0.1667), precision value 
(0.6667) and F1-Score (0.4878). It can be deduced that the 
HESCA model with GBF outperforms that of the HESCA 
model with full-input features. 
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Table 8: Comparison of Base Models and HESCA Model Performance on Training Data based on GBF 
 

 Base Models Stacked Model 
Metrics GBM DRF DNN GLM NB HESCA Model 

Accuracy 0.9139 0.8279 0.8387 0.7957 0.7957 0.9677 
Log loss 0.2838 0.5021 0.7200 0.4851 0.5926 0.1172 
Recall 0.9000 0.7222 0.6552 0.6000 0.6000 0.9000 

Specificity 0.9178 0.8533 0.9219 0.8677 0.8788 1.0000 
Precision 0.7500 0.5417 0.7917 0.6250 0.6667 1.0000 
F1-Score 0.8100 0.6191 0.7169 0.6122 0.6316 0.9474 

AUC 0.9329 0.7416 0.8795 0.7769 0.7298 0.9952 
 

Table 9: Comparison of Base Models and HESCA Model Performance on Test Data based on GBF 
 

 Base Models Stacked Model 
Metrics GBM DRF DNN GLM NB HESCA Model 

Accuracy 0.8438 0.7500 0.7188 0.7813 0.7500 0.9063 
Log loss 0.4686 0.5156 0.7310 0.5038 0.4948 0.2959 
Recall 0.6667 0.5385 0.5000 0.6667 0.5333 0.7500 

Specificity 0.9500 0.8947 0.9375 0.8077 0.9412 1.0000 
Precision 0.8889 0.7778 0.8889 0.4444 0.8889 1.0000 
F1-Score 0.7619 0.6364 0.6400 0.5333 0.6667 0.8571 

AUC 0.8285 0.7536 0.7778 0.8140 0.8019 0.9251 
 

Table 8 and Table 9 show the comparative performance 
metrics of base models and the HESCA model on training and 
test data respectively based on GBF. It can be observed in 
Table 4 that the HESCA model with the least log loss value 
(0.1172) had the best accuracy (0.9677), specificity (1.00), 
precision (1.00), F1-Score (0.9474), and AUC (0.9952) 
compared to those of the base models. It is interesting to 
observe that the best recall value (0.9000) is recorded for both 
the GBM base model and the HESCA model. Figure 8 
graphically shows the information in Table 8. It can also be 
observed in Table 9 that the HESCA model with the least log 

loss value (0.2959) had the best accuracy value (0.9063), 
recall (0.7500), specificity (1.00), precision (1.00), F1-Score 
(0.8571), and AUC (0.9251) on test set compared to those of 
base models. Figure 9 graphically shows the information in 
Table 9. In effect, it can be deduced that the HESCA model 
outperformed the base models on the train and test set based 
on the optimal feature subset of the data used in this study, 
indicating better predictions on patients with recurrent 
HNSCC prognosis. The ROC curve analyses of each base 
model and HESCA model on the training set and test set are 
shown in Figure 6 and 7 respectively. 
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Fig 6: ROC Curve analysis of base models and HESCA model on the Training set 
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Fig 7: ROC curve analysis of base models and HESCA model on Test set 
 

 
 

Fig 8: Graph of Base models and HESCA model on training set 
 

 

Fig 9: Graph of Based models and HESCA model on test set 
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Fig 10: A good fit learning curves plot 
 

Figure 10 displays the HESCA model's good fit learning 
curves graphic. The training loss (blue curve) and validation 
loss (red curve) of a model should both decline to a level of 
stability and flatten at the point when they can no longer 
decrease. It was found that both curves descended to a stable 
point with a narrow separation between them known as the 
generalization gap. This demonstrates that adding training 
examples does not enhance a model's performance when there 
has been a training loss and that adding training examples 
does not enhance a model's performance when there has been 
a validation loss. This demonstrated how well the suggested 
HESCA model suited the data.  
 
Discussion  
In Ghana, between the ages of 15 and 60, as opposed to after 
60, HNSCC subtypes have a growing incidence rate [8]. This 
shows that the average age at which HNSCC develops is 
lower, and that the likelihood of patients being treated with 
the intention of curing their illness is very low because they 
may not be able to pay for the necessary care due to their poor 
financial situation. Where they are able to afford the curative 
intent treatment, they are not able to complete such treatment 
due to low-income level. Those that are able to complete such 
treatment for cancer to reach its remission, they still 
experience recurrence or relapse due to the advanced or 
metastatic stage of tumor at its diagnosis [8]. That, HNSCC 
recurrence is strongly linked to the stage of tumor at diagnosis 

[20]. In this case, early diagnosis and accurate prognosis is 
needed. A lot of research has recently been done in an effort 
to increase the precision of HNSCC prognosis and predictions 
using machine learning techniques, particularly the ensemble 
techniques that enhance the performance of the classification 
model by combining multiple different models rather than 
base models [4, 2]. In order to develop prediction models and 
have their performance tested in order to produce a more 
robust model, this study used the layered generalization 
(stacking) technique. Each of the strong base prediction 
models employed in this study-GBM, DRF, DNN, GLM, and 
NB-was used as a meta classifier in the stacking ensemble in 
order to create the best meta-model. 
Even though the independent predictive models of GBM, 
DRF, DNN, GLM, and NB performed well on the GBF, 
performance improved across the board when the stacking 
strategy was used. The stacking ensemble utilizing GBM as a 
meta-classifier, on the other hand, demonstrated superior 
prediction accuracy than the pre-existing base models and 
other classifiers taken into consideration as meta-classifiers in 
this study. The outcomes of this study demonstrated that 
stacked ensemble models with GBM acting as a meta 
classifier are useful as a supplementary tool for categorizing 
and predicting recurrent HNSCC prognostic data. This gave 
the stacked ensemble model having five base models and a 
GBM meta-model based on GBF termed as HESCA model in 
this study. 
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 Conclusion And Future Work 

Stacked ensemble model termed as HESCA model through 
stacked generalization was presented for classifying and 
predicting recurrent HNSCC prognosis in random grid search 
and achieved significant improvement in its performance. 
GBFS provided 8-input features; Nodes, Age, Smoke, StageIV, 
p63, TreatCCRT, PaTT4, and Size as the optimal feature 
subset; thus, the most accurate prognosis for recurrent 
HNSCC. The proposed HESCA model (8-input model) based 
on GBF achieved significant improvement in accuracy by 
56.25%, from 34.38% (model with full-input) to 90.63% with 
a reduction in log loss from 1.0435 to 0.2959. It was also 
observed that there is significant improvement in accuracy 
and log loss of GBM model from its base model to its stacked 
ensemble model with accuracy from 84.38% to 90.63% and 
log loss from 0.4686 to 0.2959. 
In this work, the best meta classifier model was explored 
where the identical base models were utilized in both the base 
classifier and the meta classifier based on GBFS for the best 
feature subset. The findings of this work offer a viable guide 
for selecting machine learning models for additional stacking 
generalization research. It is anticipated that by incorporating 
many layers of stacking, it would be able to construct a two-
layer multi-level stacked ensemble model with improved 
performance. However, this study has limitations because it is 
based on a one-layer stacked ensemble learning. 
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