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Introduction
In 1961, FitzHugh provided a nerve membrane model as follows.
’ 1
{sx ) = x(t) — §x3(t) —y(t) 1)
y'(t) =x() —by(t) +a
Where x means the activator, and y the inhibitor state of a neuron; ¢, a, b are some constants.
Since then various FHN models have been studied. For example, Rybalova et al. considered
the following n-coupled model [
S =3 —p 4 ZyiHR () (w; — ;) + by, (v; — v;)
eup =w — U — vt hjniog (buny — W wlVj — Vi ?
o
vi'=u;+a; + ;Z}i’f—R (buu(uj — ;) + by (v — Vi))
The authors explored the phase space structure, calculated basins of attraction, and analyzed
the system's parameter space. Plotnikov and Fradkov also considered a n coupled network
model B,
1
{Sxi' =X — gx? =y + X cijxg tu, 3)
vi'=x;—by;+ai=12,..,n
The FHN model (3) with random topology and different coupling values has been discussed. It
is known that many network models which include the FHN network should incorporate time
delays due to the finite propagation speeds of signals. Therefore, some delayed FHN network
models have been investigated (%1, For instance, Lu et al. considered the following FHN
model ™.
21 (1) = 2, (O, (1) — ) (1 = x,(8)) = y1(6) + M2t — 7) = x,(8)) +§(0)
y1(t) = bx;(t) — cy, () + M1(3’2 t-1)- J’1(t)) @)
X% (£) = 2(1) (2(8) = (1 = 22(8)) = ¥2(6) + Mo, (t = 7) = x,(8)) + £(0)
Corresponding Author: k Jé (t) = be (t) —CY2 (t) + M, (yl (t - T) — V2 (t))
Chunhua Feng
Department of Mathematics and It was found that time delays can induce the phase synchronization and mode transition of
Computer Science, Alabama Nati . . [5]
S - oscillation. Zhen and Xu considered a coupled FHN neural system with delay as follows ™.
tate University, Montgomery,
AL, USA
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(ui(®) = —uy () (wy (1) — D(wy (1) — @) — uy(t) + tanh(us(t — 1))
uh () = b(uy (8) — ruy(0))

us(0) = —us () (us(t) — D(us(t) — a) — uy(t) + tanh(u, (t — 1))

L uy(©) = b(us(t) —ru ()

By means of the normal form method, steady-state Tate bifurcation of the coupled FHN model (5) was investigated. In order to
describe the model as more reasonable, Fan and Hong [l introduced second time delay in model (5).

®)

(ui(6) = —uy () (uy (1) = D(wy (1) — @) — uy () + tanh(uz(t —14))
uy () = b(uy (8) — ruy(0))

us(0) = —us(0) (us(t) — D (us(t) — a) — uy(t) + tanh(u, (t — 1,))

L uy(0) = b(us(t) — ru ()

An investigation of stability and Hop bifurcation of the coupled system (6) was presented. Similarly, the bifurcating periodic
solution and stability for two coupled FHN models, one can see [*31. In 4], Zhen and Xu considered a three-coupled FHN model.

(6)

u,'(t) = - §uf (&) + cuf(t) + duy () —up () + aui(®) + BIf (us(t — ) + f(us(t — )]
u(t) = 3(“1(t) — bu, (t))

< uz'(t) = —§u§(t) + cu3(t) + dus(t) — uy(t) + aud () + BIf (wy(t — 1) + f(us(t — )]
uy () = &(u3(t) — buy (1))

ug'(t) = —§u§(t) + cud(t) + dus(t) — ug(t) + aud (t) + BLf (uy(t — ) + £ (us(t — 1))]
ug(t) = e(us(t) — bug (1))

A group of sufficient conditions were given to present Bautin bifurcation of the synchronous system by applying the Bautin
bifurcation theorem. In %1, Igbal et al. discussed the following four coupled FHN models:

U]

x1(8) = x(xp = DA = 1x1) =1 — ga[Cer = 22) + (e — x4)] + Lexen + dexen
y1(t) = byx;

X3 (8) = %00 = D1 —1325) =y, — Go[ (2 — x1) + (2 — x3)] + Lextz + dextz + Uyt
Y2(8) = byxy +uyy

x3(8) = %303 = D1 —13%3) = ¥3 — g3[ (3 — x2) + (X3 — x4)] + Lexez + dexes + Uz
y3(8) = baxs +uy,

x4 (8) = x4 (g — DA —1ax4) — ya — Gal(xa — x3) + (x4 —x)] + Lextn + dextn + Uss
Ya(t) = baxy + Uy3

The dynamical behaviour analysis, and synchronization for model (8) with unknown parameters linked were exploited. For a

single neuron of memristive FHN network, Njitacke et al. presented the dynamical analysis %1, Semenov et al. discussed a

stochastic FHN model with time-delayed feedback by means of simulations 7. For a modified FHN neuron model with external

electric fields, Zhang et al. studied the complex motions of the neuron by means of the discrete mapping method [*8l. Motivated by
the above models, in this paper, we will consider the following five coupled FHN models with discrete delays.

@)

w'(©) = =3uf (O + qud(©) + diwy (1) = e (6) + aud ()
+ Z?:z B12j-1 [f(u1 (t—11)— f(uzj—l(t - sz—1))]
uy(t) = &uy(t) — byuy(t)
us'(8) = =3 ud(0) + cud (1) + dyus (6) — ryus () + aud (0)
+ st'zl,jiz B3zj-1 [f(u3(t —T3) — f(uzj—1(t - sz—l))]
uy () = &3us(t) — bou,(t)
us'(£) = =5 ud(®) + c3ud (D) + dyus(£) — rsug(®) + aud(©)
+ 251 e3 Bszjo1 [f (Us(t = Ts) = fugj(t — 72j-1))] ®)
ug(t) = 3us(t) — bue(t)

u;'(t) = —%u? (t) + c4ub (t) + dauy (t) — nug(t) + auf(t)
+ 215'=1,j¢4ﬁ7,2j—1 [f (us (t —77) — f(uzj—1(t - sz—l))]
ug(t) = e4u;(t) — baug(t)
uy'(t) = —éug(t) + csus (t) + dsug(t) — r5u;0(t) + asud(t)
+Z?=1 ﬁ9,2j—1 [f(u9(t —Tg) — f(uzj—l(t - sz—1))]

uyo(t) = esug(t) — bsuyo(t)
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Our goal is to consider the dynamic behaviour of the model (9). Since system (9) has five delays, and if those delays are different
positive numbers, then the bifurcating method is not easy to deal with model (9) due to the complexity of bifurcating equation. In
order to discuss the dynamic behaviour of the solutions for system (9), we adopt the generalized Chafee's criterion [1% 201,

Preliminaries
For the activation functions f(u), we assume that f(u) is continuous bounded differentiable function, satisfying:

f(0) =0,uf(u) >0 (u=0)(10)

The general activation functions such as tanh (x), arctan (x) satisfy condition (10). The linearized system of (9) around the zero
point is the following:

uy ' (t) = dquqg (t) — rup(t) + byqug (E — 1) — bygus(t — 73)
—by5us(t — Ts) — by7uz(t — T7) — b1oUo(t — 79)
uy(t) = &uq () — byup(t)
us' (t) = daug(t) — rpuy(t) — b3quy (t — 74) + bazus(t — 73)
—b3s5us(t — Ts5) — b37u; (t — T7) — b3gUo(t — To)
uy (t) = guz(t) — byuy(t)
us'(t) = daus(t) — r3ue(t) — bsquy (t — 71) — bszus(t — 73)
3 +bssus(t — 7s5) — bs7u7 (t — 77) — bsgUe(t — 7o) (11)
ug(t) = ezus(t) — bzug(t)
u;'(t) = dauy (8) — nyug(t) — byguq (¢ — 1) — bygus(t — 13)
—b;5us(t — Ts) + b77u; (t — T7) — b7gUo(t — To)
ug(t) = e4uy(t) — baug(t)
Ug' (t) = dsug(t) — 15Uy (t) — boruy (t — T1) — bogus(t — 73)
—bgsus(t — Ts) — boyu7(t — T7) + bogUo(t — T9)
\ Uy (t) = esug(t) — bsuyo(t)

Where b;; = Zj’?:lj# Bijf'(0),b;; = B;jf'(0) (i,j = 1,3,5,7,9). System (11) can be written in a matrix form:
U'(t) =AU(t) + BU(t — 1) (12)

Where U(t) = [uy(£), uy(t), ..., uso (017, Ut — 1) = [u (t — 71),0,u3(t — 73), ..., ug(t — 75),0]7. Both A and B are 10 x10
matrices as follows:

d, -n 000000 O0 O
& —b, 0000O0O0UO0 O
0 0 d, -1 0 0 0 0 0 0
0 0 & —b é) 0 8 0 8 0
_ _ 0 0 0 0 3 —T3 0 0
A= (aij)10><10 | o 0 0 0 e5 —b; 0 0 0 o I
0 0 0 0 0 0 d, —Ta 0 0
0 0 o0 0 0 O & —bs 0 0
0 0 0 0 0 0 0 0 ds —Ts
0 0 0 0 0 0 0 0 & TIs
by; 0 —b130 —bys 0 —by; O by 0
0 0 0O 00 0O0O 0O 0O
—b3y; 0 b3z 0 —bss 0 —bs; 0 —bzy 0O
0 0 0 0 0 0 0 0 0 0
B = (bl) — _b51 0 _b53 0 b55 0 _b67 0 _b59 0
/710x10 0o 0 0O 0 0 o0 0 0 0 0
-b,y, 0 —b,3 0 —b,s O b;; 0 —b,e O
0 0 0 0 0 0 0 0 0 0
_b91 0 _b93 0 _b95 0 _b970 0 b99 0
0 0 0 0 0 0 0 0 0 0
Thus system (9) can be written as a matrix form
U'(t)=AU(t) + BU(t — 1) + ®(U) (13)
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Where ®(U) is a ten-by-one vector?
@) = [®,(U), D, (V), ..., q:’lo(U)]T

5
1
= |38 + (@ + @O + ) By [t = 1) = Fltaoa (6 = T20))]
=2

5
1
=D Buaal IO = £ @], 0, = 5u3@) + (s + @O

j=2
4 4 T
+ Z ﬂ9,2j—1 [f(ug(t —Tg) — f(uzj—1(t - sz—l))] - Z ﬁ9,2j—1[f9’(0) - lej—1(0)] ,0
Jj=1 j=1

Lemma 1 All solutions of system (9) are bounded.

Proof From condition (10), the activation functions are bounded, and assuming that | f(w;)| < N; (i=1, 3, 5, 7, 9). Construct a
Lyapunov function V(t) = }Qléu? (t), then calculating the derivative of V(t) through system (9) we have

10

VOl = ) w0 u(®

= —%uf(t) + C1uf )+ dlu% () — ru (Duy (t) + alui% (t)
5

+u,(t)

j
1
—§u§(t) + csud (t) + dsud (t) — rsug (D ugo(t) + asus(t)

ﬁ1,2j—1 [f(ul(t —Ty) — f(uzj—1(t - TZ]'—I))] +

2

4
+uy(t) Z Bozj-1 [f(u9(t —Tg) — f(uzj—l(t - sz—1))] +

=1
esUo(t)Uyo(t) — bsuiy(t)

< 3 (O + -+ +ud(©) + el O] + -+ lesu O]

+- Z?:1 |B9,2j—1| sz—1|u9(f)| + les]|ug(®)ugo(8) | + |bs|uzy(t) (14)

Noting that u/(t) are higher order infinity thanu}(t), uf(t), |u;(©)w;()| as u; —» oo, and —é < 0. Therefore, there exists a
sufficiently large positive number L such that V' (t)| ) < 0 as |u;(t)| > L, implying that all solutions of system (9) are bounded.

Lemma 2 If the matrix A + B = C is a nonsingular matrix, then system (9) has a unique equilibrium point.

Proof If U* = [u},u}, ..., ulo]T is an equilibrium point of system (9), then we have the following algebraic equation:

1
_guig + cus? + dyui — s + aqug® + Z?:z Bi2j-1 [f(ui) - f(u;j—l)] =0
gui —bu; =0
1
—§u§3 + cuz? + dyus — rup + aus® + Z?:l,j::z B32j-1 [f(ué) - f(u;j—1)] =0
&u; —byu; =0
1
_guES + c3ug? + dyus — r3ug + azus® + Z?:l,j:ﬁ Bs2j-1 [f(ug) - f(u;j—1)] =0
&3us —bsug =0
1
_gu;S + cqui® + dyu; — Taug + azuz® + 215‘=1,j¢4 :37,2]'—1 [f(u;) - f(u;j—l)] =0
guy —bgug =0
1
—§u33 + csus? + dsus — rsuj + asus? + Xioq Bozj1 [f(us) — f(qu—l)] =0

&suy — bsuiy =0

(15)

From condition (10), the zero is a solution of system (15). System (15) can be written as

CU* = —d(UY) (16)
Corresponding (16), consider system
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cUu* =0 a7)

Obviously, system (17) has a unique trivial solution since C is a nonsingular matrix. Based on the Cramer's Rule, system (16) also
has a unique solution. Now the even number equations in system (16) and (17) are the same. This means that the unique solution
in system (16) is only the trivial solution. In other words, system (9) has a unique equilibrium point, it is exactly the zero point.

The existence of periodic oscillatory solution

Theorem 1 Assume that the system (9) has a unique equilibrium point for a selected set of parameters. Let the eigenvalues of
matrices A and B are aq, @y, ..., @49 and Sy, B, -.-, B1o, respectively. If there exists at least one eigenvalue of matrix 4, say a,, with
the real part Re(a;) > 0, or Re(a; + B;) > 0, then the trivial solution of system (12) is unstable, implying that the trivial solution
of system (9) is unstable, and system (9) generates a periodic oscillatory solution.

Proof In order to prove the existence of the periodic oscillatory solution for system (9), it is necessary to first consider an
auxiliary system of (12) as follows:

U'(t) = AU(t) + BU(t — 1.) (18)

Where 1, = min{t;,73,...,79}, and U@t —1,) = [w(t—1.),0,u3(t — 7,), ..., us(t — 7,),0]7. Since ay,ay,..,a;,and
B1, B2, .-, B1o are eigenvalues of matrices A and B respectively, system (18) has the following characteristic equation:

L(A-ai—pe?™)=0 (29)

Noting that matrix B has five rows which are zeros. Therefore, there are five eigenvalues of matrix B which are zeros, assuming
that 8; = 0. Thus we have

A—a’l—ﬁle_'h*=l—a1=0 (20)

Equation (20) means that there is an eigenvalue which is a positive real part of a complex number of systems (18), implying that
the trivial solution of system (18) is unstable. If Re (@, + ;) > 0, we will prove that there exists a positive real part of the
characteristic root for equation:

A— a, — ﬁl e_'h* = (21)

Indeed, set f(1) = A — a, — B, e *, then f(A)is a continuous function of A. Since Re (a; + ;) > 0, so f(0) = Re(—a, —
B1) < 0. Noting that e~ <« 0 as A (> 0) sufficiently large. Therefore, there exists a 4, such that f(Re(1,)) = Re(4,) — a; —
B, e R0 > 0. Based on the Intermediate value theorem of continuous function, there is a A, € (0, 1,) such that f(Re(AO)) =

Re(Ay) — a; — By e Re(0)™ = 0. In other words, equation (21) has a positive real part characteristic root. Therefore, the trivial
solution of system (18) is unstable.

Noting that 7, < 1; (i = 1,3,5,7,9). now from the basic theory of functional differential equation 2, for a small delay, the trivial
solution of system (18) is unstable, then the trivial solution is still unstable when delays are increased in system (12). In other
words, the instability of the trivial solution of system (18) implies the instability of the trivial solution of system (12). One can see
that system (12) is a linearized system of (9). The instability of the trivial solution of system (12) indicates that the trivial solution
of system (9) is unstable. Since system (9) has a unique unstable equilibrium point, all solutions are bounded, it will force system
(9) to generate a limit cycle, namely, a periodic oscillatory solution [*% 201,

Theorem 2 Assume that the system (9) has a unique equilibrium point for a selected set of parameters. The following condition
det(-A—-B) <0 (22)

Holds, then the trivial solution of system (12) is unstable, implying that the trivial solution of system (9) is unstable, and system
(9) generates a periodic oscillatory solution.

Proof Similar to Theorem 1, we only need to prove that the trivial solution of auxiliary system (18) is unstable. The characteristic
equation associated with system (18) is the following:

det(Alyp —A—Be ™) =0 (23)

Where I, is the ten-by-ten identity matrix? Setting

g(A) = det(Aly — A — Be™*™) (24)

Then g(A4) is the characteristic polynomial of system (18). Obviously, g(A4) is a continuous function of 1. We will show that g(1)

has a positive characteristic root indeed, according to condition (22).

g(0) =det(-A—B) <0 (25)
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On the other hand, there is a sufficiently large A, say A* such that

g(A) =det(A'l;p—A—Be *%) >0 (26)

Again based on the Intermediate value theorem of continuous function, there exists a A, € (0, A*) such that g(1,) = det(A*I10 -
A—- Be"“’*) = 0. In other words, g(1) has a positive characteristic root A,. So the trivial solution of system (18) is unstable,

implying that the trivial solution of system (9) is unstable. This means that system (9) generates a periodic oscillatory solution
based on the generated Chafee's criterion. The proof is completed.

Simulation result

Firstly we select the activation function as f(u) = arctan(u). Then f'(u) = ﬁ so f'(0) = 1 and b;; = f;;. The parameters are
¢; = 0.56,¢c, = 0.54,¢3 = 0.58,¢c, = 0.52,¢c5 = 0.55,

d, = —-0.15,d, = -0.18,d; = -0.12,d, = —0.16,ds = —0.14,r, = 1.25,r, = 1.14,r, = 1.12,1, = 1.28,15 = 1.15,

= 0.15,b, = 0.28,b; = 0.25,b, = 0.24, b5 = 0.18,

& =1.35,e, = 1.45,e5 = 1.55,¢, = 1.48,&5 = 1.52, 8,3 = 0.95, 315 = —1.16, 8,7 = 0.78, 819 = —0.56, 83, = 0.95, B35 =
—0.24, B3, = 0.52, B39 = —0.64, B, = 0.15, Bs3 = 0.35, 85, = 0.12, Bsg = 1.75, B;1 = 0.28, B3 = —0.75, B75 = 0.26, B9 =
—1.25, B89, = 0.85, 893 = —1.98, Bys = 0.45, B4, = 1.86,a; = —0.25,a, = —0.15,a5; = —0.24,a, = —0.42, a5 = —0.32. We
see that the characteristic values of matrix A are —0.1500 + 1.2990 i, —0.1500 + 1.4464 i,—0.1850 + 1.3579 i, —0.2000 +
1.3541i,—0.2300 + 1.3870 i, the characteristic values of matrix B are 3.0835, 0.0368, —0.1668,0.0413 + 0.7153i,0,0,0,0, 0.
obviously, A+ B = C is a nonsingular matrix. Noting that matrix B has a characteristic value 3.0835, and 3.0835 +
(—0.2300) = 2.8535 > 0. Based on Theorem 1, there is a periodic solution (see Fig. 1 and Fig. 2). Then we change the
activation function as f(u) = tanh(u). we see that f'(u) = 1 — tanh? u, so f'(0) = 1 still holds and b;j = B;;. We select ¢; =
0.36,c, = 0.25,¢c; = 0.38,¢c, = 0.42,cs = 0.35,d, = —0.25,d, = —0.28,d; = —0.32,d, = —0.26,

ds = —0.24,1, = 0.85,1, = 0.76,73 = 0.82,1, = 0.78,15 = 0.75,b, = 0.45,b, = 0.38,b; = 0.35,b, = 0.45,bs = 0.48,¢, =
1.85,¢, = 1.75,65 = 1.95, ¢, = 1.78, &5 = 1.92,

Biz = 0.95,8;5 = —1.16, 817 = 0.78, B1o = —0.56, f3; = 1.15, B35 = —0.52, B3, = 0.48, B39 = —0.74, B, = 0.35, B3 =

0.45, Bs; = 0.25, Bsg = 1.85, 8;; = 0.48, f;3 = —0.95, 8,5 = 0.56, B, = —1.55, By; = 0.95, By3 = —1.28, Bgs = 0.75, g7 =
1.25,a; = —0.15,a, = —0.18, a3 = —0.12, ¢, = —0.16, a5 = —0.20. The characteristic values of matrix A are —0.3500 +
1.2500i, —0.3300 + 1.1522 i, —0.3350 + 1.2644 i, —0.3550 + 1.1745i,—0.3600 + 1.1940 i, the characteristic values of
matrix B are 3.9947, 1.4542, —0.2964, 0.6987 + 1.3279,0,0, 0,0, 0. Therefore, A + B = C is a nonsingular matrix. We see that
det (—A4 — B) = —0.3092 < 0. The condition of Theorem 2 is satisfied, when time delays are selected as 0.18, 0.16, 0.15, 0.14,
0.12, system (9) generates periodic oscillations (see Fig. 3).

90
(a) Solid line: u, (1), dashed line: u,(t), dotted line: u,(t), dashdotted line: u,(t).

5 T

0 10 20 30 40 50 60 70 80 90 100
(b) Solid line: uq(I). dashed line: uﬁ{t). dashdotted line: u.},(l}.

(¢) Solid line: ug\,(t). dashed line: uq(t), dotted line: um(l}.

Fig 1: Periodic oscillation of the solutions, delays: 0.28, 0.26, 0.24, 0.25, 0.22
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(a) Solid line: ul(t}. dashed line: u_(t), dotted line: u3(t). dashdotted line: u4m.

L] 10 20 30 40 50 60 70 80 o0 100
(¢) Solid line: ug(t), dashed line: uy(1), dotted line: u 10D
Fig 2: Periodic oscillation of the solutions, delays: 0.78, 0.76, 0.75, 0.74, 0.72
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30 40 50 60 70 80
(c) Solid line: us(t), dashed line: uy(t), dotted line: um(t).

Fig 3: Periodic oscillation of the solutions, delays: 0.18, 0.16, 0.15, 0.14, 0.12
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Conclusion

This paper considers a class of FitzHugh-Nagumo network model which includes five different discrete delays. Two sufficient
conditions to guarantee the existence of periodic oscillatory solutions are obtained. A specific selection of parameters is used to
demonstrate the present results. Our criterion to guarantee the existence of permanent oscillations is different bifurcation method.
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