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Abstract 

Decomposition in topological space HGTs (Hierarchy of Grids and Tiles) is a fundamental process in 

spatial data analysis that involves breaking down a larger spatial unit into smaller subunits. HGTs are a 

hierarchical representation of spatial data that provide a scalable approach to organizing and analyzing 

data at different levels of detail. In topological space HGTs, decomposition involves partitioning the data 

into smaller regions or tiles based on their topological properties. Topological space HGTs enable the 

efficient storage, retrieval, and processing of large spatial datasets by reducing the complexity of the data 

structure and facilitating faster and more targeted analysis. The decomposition process involves several 

techniques, including clustering, spatial subdivision, and partitioning. These techniques enable the 

efficient handling of large spatial datasets and provide a scalable approach to managing and analyzing 

data at different levels of detail. The decomposition process in topological space HGTs has significant 

benefits for data management and analysis. It allows for more efficient and targeted processing of data, 

enabling users to quickly identify patterns and relationships within the data. Furthermore, it facilitates 

more accurate spatial analysis by reducing the complexity of the data structure and allowing for more 

straightforward modeling and simulation of spatial phenomena. In addition to its benefits for data 

management and analysis, decomposition in topological space HGTs also has significant implications for 

visualization and communication of spatial information. By breaking down complex spatial units into 

smaller and more intuitive subunits, it becomes easier to convey patterns and relationships in the data to 

stakeholders and decision-makers. Overall, decomposition in topological space HGTs is a crucial process 

for effectively managing and analyzing spatial data in a wide range of applications, including 

environmental monitoring, urban planning, and disaster management. Its benefits for data management, 

analysis, and visualization make it a vital tool for spatial data analysts and researchers. In this paper we 

introduce and study the notions of R∗ - H -sets, R∗ - H -sets and R∗- H -sets in hereditary generalized 

topological spaces. Also we obtain decomposition of (µ, λ) -continuity. 

 

Keywords: Decomposition in topological space, large spatial datasets, complexity of the data structure, 

decomposition 

 

1. Introduction 

The decomposition of the Hierarchy of Grids and Tiles (HGTs) is a fundamental concept that 

plays a critical role in the efficient management, analysis, and visualization of spatial data. 

HGTs provide a hierarchical structure for representing spatial information at multiple levels of 

detail, allowing users to navigate through different scales or resolutions. By decomposing the 

hierarchy, spatial data can be partitioned into smaller components, such as grids or tiles, 

enabling more granular control and processing of the data. 

The decomposition of HGTs serves as a powerful mechanism for organizing and accessing 

spatial data in a scalable and adaptable manner. It allows for the representation of spatial 

information at varying levels of granularity, from a global perspective down to localized 

details. By breaking down the hierarchy into its constituent parts, users can selectively access 

the desired level of detail, enabling focused analysis and visualization of specific areas or 

features of interest. 

Moreover, decomposition in HGTs facilitates efficient data management by enabling spatial 

indexing techniques and data structures tailored to each level of detail. This approach 

optimizes data retrieval and processing, enhancing the overall performance of spatial 

operations and queries. Additionally, the decomposition allows for the progressive rendering 

and visualization of spatial data, enabling a seamless and interactive user experience. 

Furthermore, the decomposition of HGTs provides flexibility and adaptability in handling 

diverse spatial datasets. The hierarchical structure can be customized to accommodate varying 

resolutions, extents, or characteristics of spatial information. This flexibility allows for the 

representation and analysis of different spatial phenomena, ranging from local to global scales, 

catering to specific application requirements. 
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Overall, the decomposition of the Hierarchy of Grids and 

Tiles (HGTs) is a key concept that empowers efficient data 

management, analysis, and visualization of spatial data. It 

enables multiscale representation, granular control over the 

level of detail, efficient data retrieval and processing, 

progressive rendering, and adaptability to diverse spatial 

datasets. The decomposition of HGTs serves as a foundation 

for various applications in fields such as geographic 

information systems (GIS), remote sensing, urban planning, 

and environmental monitoring, facilitating a deeper 

understanding of spatial phenomena at different scales. 

 

1.1 Application of HGTS 

Decomposition techniques play a significant role in the 

application of the Hierarchy of Grids and Tiles (HGTs) in a 

topological space. Here's a detailed analysis of the various 

applications of decomposition in topological space HGTs: 

1. Multiscale representation: Decomposition allows for 

the multiscale representation of spatial data in HGTs. It 

involves breaking down the topological space into grids 

or tiles at different levels of detail. Each grid or tile 

represents a specific spatial extent or resolution. This 

multiscale representation is valuable in scenarios where 

spatial data needs to be accessed or visualized at different 

levels of granularity. For example, in interactive mapping 

applications, users can zoom in or out to view spatial 

information at varying resolutions by accessing the 

appropriate level of detail within the hierarchy. 

2. Spatial analysis and querying: Decomposition in HGTs 

facilitates efficient spatial analysis and querying 

operations. By dividing the topological space into smaller 

units, such as grid cells or tiles, spatial operations like 

point-in-polygon queries, spatial joins, or overlay 

analysis can be performed more effectively. 

Decomposition enables the use of spatial indexing 

techniques, such as quadtree or octree, which improve the 

efficiency of spatial data management, retrieval, and 

analysis. These techniques enable faster search and 

retrieval of spatial data within specific grid cells or tiles, 

leading to improved query performance. 

3. Level of detail management: Decomposition techniques 

allow for the management of the level of detail within the 

HGT hierarchy. The HGT hierarchy typically consists of 

multiple levels, each representing different scales or 

resolutions of spatial data. Decomposition facilitates the 

progressive transition between different levels of detail. 

As the hierarchy is traversed from higher to lower levels, 

the spatial data becomes more detailed. This level of 

detail management is particularly useful in applications 

that require progressive rendering or visualization of 

spatial data, allowing users to explore the data at varying 

levels of granularity. 

4. Spatial operations and analysis: Decomposition in 

HGTs enhances the efficiency of spatial operations and 

analysis. By decomposing the topological space into 

grids or tiles, spatial operations can be performed 

independently on each unit, reducing the complexity and 

computational load. For instance, overlay analysis 

between two layers of spatial data can be executed 

separately at the grid or tile level, enabling parallel 

processing and optimization of the computation. This 

decomposition approach improves the performance of 

spatial analysis tasks, making them more scalable and 

efficient, especially when dealing with large datasets. 

5. Spatial data compression: Decomposition techniques 

can be applied to spatial data compression in HGTs. By 

identifying redundancy or less significant information at 

different levels of detail, compression algorithms can be 

used to reduce the storage space required for representing 

spatial data. Compression can be performed on individual 

grids or tiles, considering their spatial context within the 

hierarchy. This approach ensures that the compressed 

data can be efficiently reconstructed and visualized at the 

desired level of detail. Spatial data compression in HGTs 

is beneficial for reducing storage costs, enabling faster 

data transmission over networks, and optimizing resource 

usage. 

 

1.2 Decomposition of (µ, λ) -continuity 

Definition 4.1. A function f : (X, µ, λ) → (Y, λ) is said the be 

(R∗, λ) –continuous (resp. (R∗, λ) -continuous, (R∗, λ) -

continuous), if f−1(V ) is R∗ - H -set (resp. 

C AB B 

R∗ - H -set, R∗ - H -set) for each λ-open in (Y, λ). 

C AB 

 

Theorem 4.2. Let a function f : (X, µ, λ) → (Y, λ). Then the 

following hold: 

1. Every (µ, λ) -continuous function is (R∗, λ) -continuous. 

2. Every (µ, λ) -continuous function is (R∗, λ) -continuous. 

 

Proof. (1). Let a function f : (X, µ, λ) → (Y, λ) is (µ, λ) -

continuius. Then f−1(V ) is µ -open for each λ -open in (Y, λ). 

Now f−1(V ) is R∗ - H -set by theorem 

 

6.1.2. Hence f is (R∗, λ) -continuous. 

(2). Let a function f : (X, µ, λ) → (Y, λ) is (µ, λ) -continuius. 

Then f−1(V ) is µ -open for each λ -open in (Y, λ). Now f−1(V ) 

is R∗ - H -set by theorem 6.1.2. 

 

Hence f is (R∗, λ) -continuous. 

 

Theorem 4.3. For a function f: (X, µ, λ) → (Y, λ), the 

following equivalent: 

1. f is (µ, λ) -continuous, 

2. f is both (R∗ - H, λ) -continuous (R∗, λ) -continuous. 

α  C 

 

Proof. (1) ⇒ (2). Let a function f : (X, µ, λ) → (Y, λ) is (µ, λ) -

continuous. Then f is (R∗ - H, λ) -continuous by Theorem  

α  
5.3.1 and (R∗, λ) -continuous by Theorem 
 C 

6.3.1. 

 

(2)⇒ (1). Let a function f : (X, µ, λ) → (Y, λ) is both - 

continuous (R∗, λ) -continuous. Then f is  -continuous by 

Theorem  

(3) 

(4) 6.1.3. 

 

Theorem 4.4. For a function f: (X, µ, λ) → (Y, λ), the 

following equivalent: 

1. f is (µ, λ) -continuous, 

2. f is both (R∗ - H, λ) -continuous (R∗, λ) -continuous. π B 

 

Proof. (1) ⇒ (2). Let a function f : (X, µ, λ) → (Y, λ) is (µ, λ) -

continuous. Then f is  -continuous by Theorem 5.1.1 

and  -continuous by Theorem 
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6.3.1. 

 

(2)⇒ (1). Let a function f : (X, µ, λ) → (Y, λ) is both  -

continuous  -continuous. Then f is (µ, λ) -continuous by 

Theorem 6.1.4. 

 

Theorem 4.5. For a function f : (X, µ, λ) → (Y, λ), the 

following equivalent: 

1. f is (µ, λ) –continuous 

2. f is both (R∗ - H, λ) -continuous (R∗, λ) –continuous 

α  AB 

3. f is both (R∗ - H, λ) -continuous (R∗, λ) –continuous 

 

In summary, decomposition in topological space HGTs 

provides numerous applications, including multiscale 

representation, efficient spatial analysis and querying, level of 

detail management, improved spatial operations and analysis, 

and spatial data compression. These applications enhance the 

performance, scalability, and usability of HGT-based systems 

and enable effective utilization of spatial data in various 

domains, such as geographic information systems (GIS), 

remote sensing, urban planning, and environmental 

monitoring. 
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