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Abstract 

In this paper expression for temperature distribution in a channel bounded by two elliptical cylinders 

similarly situated for viscous incompressible fluid flowing through it neglecting for viscous 

incompressible fluid flowing through it neglecting the dissipation due to friction when as oscillatory rate 

of head addition is superposed on the steady temperature. 
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Introduction 

Solutions for temperature distribution in a circular pipe have been given by various authors 

notably Gretz, Nusselts, Goldstein. All these are cited in (1). Krishna Lal (2) considered the 

temperature distribution in Co-axial cylinders. S. U. Dube (3) considered temperature 

distribution in channel bounded by co-axial circular pipe for viscous incompressible fluid 

flowing through it by neglecting the dissipation due to friction when an oscillatory rate of heat 

addition is superposed on the steady temperature. Nigam S. (.I, II, III, IV). As the above had 

been a step forward in continuity of Nigam S. (V, VI, VII) 

 

Energy equation and its solution 

The equation of energy, in the present case is 

 
𝜕𝑇

𝜕𝑡
=

1

𝜌𝐶𝑣

𝜕𝑄

𝜕𝑡
+ 𝐾′ (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) (1.1) 

 

Where 𝐾′ =
𝐾

𝜌𝐶𝑣
 a constant and dissipation due to friction is neglected. 

Now assume that 

 
1

𝜌𝐶𝑣

𝜕𝑄

𝜕𝑡
= ∑ 𝑎𝑛𝑒𝑖𝑛𝑡∞

𝑛=1  (1.2) 

 

and 

 

𝑇 = 𝑇⋄ + ∑ 𝑇𝑛𝑒𝑖𝑛𝑡∞
𝑛=1  (1.3) 

 

𝑎𝑛 and 𝑇𝑛 are real and 𝑇𝑛is function of x and y only. 

 

Substituting equation (1.2) and (1.3) and comparing the terms of the same family the 

differential equations for the coefficients are. 

 

and 

 
𝜕2𝑇⋄

𝜕𝑥2 +
𝜕2𝑇⋄

𝜕𝑦2 = 0 (1.4) 
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and 

 
𝜕2𝑇𝑛

𝜕𝑥2 +
𝜕2𝑇𝑛

𝜕𝑦2 −
𝑖𝑛

𝐾′ 𝑇𝑛 +
𝑎𝑛

𝐾′
= 0 (1.5) 

 

How since the boundary of the tube are the ellipses let us change the equation to elliptic coordinates and the equation transform to  

 
𝜕2𝑇⋄

𝜕𝜉2 +
𝜕2𝑇⋄

𝜕𝜂2 = 0 (1.6) 

 

Before superposing the oscillatory flow, we must have fully developed steady motions with the following boundary conditions 

 

𝑇⋄ = 𝑇1, When 𝜉 = 𝜉1 

𝑇⋄ = 𝑇2, When 𝜉 = 𝜉2 

 

So (1.6) gives 

 

𝑇⋄ =
𝑇1 sinh2(𝜉2−𝜉)+𝑇2 sinh2(𝜉1−𝜉)

sinh2(𝜉2−𝜉1)
 (1.7) 

 

Now the boundary conditions are 

 

𝑇⋄ = 𝑇1𝑒
𝑖𝑛𝑡 + 𝑇1, When 𝜉 = 𝜉1 (1.8a) 

 

𝑇⋄ = 𝑇2𝑒
𝑖𝑛𝑡 + 𝑇2, When 𝜉 = 𝜉2 (1.8b) 

 

Equation (1.5) on changing to elliptic coordination becomes 

 
2

𝐶2(cosh2𝜉−cos2𝜂)
(

𝜕2𝑇𝑛

𝜕𝜉2 +
𝜕2𝑇𝑛

𝜕𝜂2 ) −
𝑖𝑛

𝐾′ 𝑇𝑛 +
𝑎𝑛

𝐾′
= 0,    

(
𝜕2𝑇𝑛

𝜕𝜉2 +
𝜕2𝑇𝑛

𝜕𝜂2 ) −
𝑖𝑛

𝐾′

𝐶2

2
(cosh 2𝜉 − cos 2𝜂)𝑇𝑛 +

𝐶𝑛

𝐾′

𝐶2

2
(cosh 2𝜉 − cos 2𝜂) = 0 (1.9) 

 

∫ ∫ (
𝜕2

𝜕𝜉2
+

𝜕2

𝜕𝜂2
)𝑇𝑛𝛽2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜉𝑑𝜂

2Π

⋄

𝜉2

𝜉1

 

 

= ∫ 𝛽2𝑝(𝜉, 𝑞) [𝐶𝑒2𝑝(𝜂, 𝑞)
𝜕𝑇𝑛

𝜕𝜂
− 𝑇𝑛

𝜕

𝜕𝜂
𝐶𝑒2𝑝(𝜂, 𝑞)]

⋄

2Π

𝑑𝜉

𝜉2

𝜉1

 

 

+ ∫ ∫ 𝑇𝑛

𝜕2

𝜕𝜂2

2Π

⋄

𝜉2

𝜉1

𝛽2𝑝(𝜉, 𝑞2𝑝,𝑛)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜂𝑑𝜉 

 

+[𝛽2𝑝(𝜉, 𝑞)
𝜕𝑇𝑛

𝜕𝜉
− 𝑇𝑛

𝜕

𝜕𝜉
𝛽2𝑝(𝜉, 𝑞)]

𝜉1

𝜉2

2Π𝐴⋄
2𝑝

 

 

+ ∫ ∫ 𝑇𝑛𝛽2𝑝

𝜕2

𝜕𝜉2
[𝛽2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)]𝑑𝜂𝑑𝜉

2Π

⋄

𝜉2

𝜉1

 

 

= −4Π𝐴⋄
(2𝑝)(𝑇2𝑒

𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡 − 𝑇1)𝛽′2𝑝(𝜉, 𝑞2𝑝,𝑚) 

 

+∫ 𝑇𝑛 (
𝜕2

𝜕𝜉2 +
𝜕2

𝜕𝜂2) 𝜉2𝑝,𝑚
𝜉2

ξ1
 (1.10) 

 

When 

 

𝛽′2𝑝(𝜉2, 𝑞2𝑝,𝑚) = 𝛽′2𝑝(𝜉, 𝑞2𝑝,𝑚) 

 

and 

 

𝛽2𝑝(𝜉, 𝑞) and 𝐶𝑒2𝑝(𝜂, 𝑞) have 
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Usual meaning where 

 

𝜉2𝑝,𝑚 = 𝛽2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞) 

 

is the solution of differential equation 

 
𝜕2𝜉

𝜕𝜉2 +
𝜕2𝜉

𝜕𝜂2 + 2𝑞2𝑝,𝑚(cosh 2𝜉 − cos 2𝜂)𝜉 = 0. 

 

Hence 

  

∫ ∫ (
𝜕2𝑇𝑛

𝜕𝜉2
+

𝜕2𝑇𝑛

𝜕𝜂2
)𝛽2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜂𝑑𝜉

2Π

°

𝜉2

𝜉1

 

 

= −2𝑞2𝑝,𝑚 ∫ ∫ 𝑇𝑛(cosh2𝜉 − cos 2𝜂)𝛽𝑒2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜂𝑑𝜉

2Π

⋄

𝜉1

𝜉⋄

 

 

+4Π𝐴⋄
2𝑝

𝛽′2𝑝(𝜉, 𝑞)(𝑇𝑛𝑒𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡−𝑇1) 

 

= −2𝑞2𝑝,𝑚�̅�𝑛 + 4Π𝐴⋄
2𝑝(𝑇2𝑒

𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡 − 𝑇1) (1.11) 

 

Where, 

 

�̅�𝑛 = ∫ ∫ 𝑇𝑛(cosh2𝜉 − cos 2𝜂)𝛽2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜂𝑑𝜉
2Π

⋄

𝜉2

𝜉1
. 

 

Now to solve equation 1.9 multiply both sides of 1.9 by 𝛽2𝑝(𝜉, 𝑞2𝑛,𝑚)𝐶𝑒2𝑝(𝜂, 𝑞2𝑝,𝑚)and integrating 𝜂within the limits ⋄ to 2Π and 

𝜉 with in the limits 𝜉1 and 𝜉2 we find equations becomes  

 

4Π𝐴⋄
2𝑝

𝛽′2𝑝(𝜉, 𝑞2𝑝,𝑚)(𝑇𝑛𝑒𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡−𝑇1) − 2𝑞2𝑝,𝑚�̅�𝑛 

 

−
𝑖𝑛

𝐾′

𝐶2

2
�̅�𝑛 +

𝑎𝑛

𝐾′

𝐶2

2
∫ ∫ (cosh2𝜉 − cos 2𝜂)𝛽𝑒2𝑝(𝜉, 𝑞)𝐶𝑒2𝑝(𝜂, 𝑞)𝑑𝜂𝑑𝜉 = 0

2Π

⋄

𝜉2

𝜉1

 

 

Or 

 

(2𝑞 +
𝑖𝑛

𝐾′
) �̅�𝑛 = 4Π𝐴⋄

2𝑝
𝛽′2𝑝(𝜉, 𝑞)(𝑇2𝑒

𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡−𝑇1) 

 

+
𝑎𝑛

𝐾′

𝐶2

2
∫ 𝛽2𝑝

𝜉2

𝜉1

(𝜉, 𝑞){2𝐴⋄
2𝑝

cosh 2𝜉 − 𝐴2
2𝑝

}𝑑𝜉 

 

Or 

 

�̅�𝑛 =
4Π𝐴⋄

2𝑝
𝛽′2𝑝(𝜉, 𝑞)(𝑇2𝑒

𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡−𝑇1) +

𝑎𝑛

𝐾′

𝐶2

2
∫ 𝛽2𝑝

𝜉2

𝜉1
(𝜉, 𝑞){2𝐴⋄

2𝑝
cosh 2𝜉 − 𝐴2

2𝑝
}𝑑𝜉

(2𝑞 +
𝑖𝑛

𝐾′

𝐶2

2
)

 

 

Or 

 

�̅�𝑛 =
(2𝑞−

𝑖𝑛

𝐾′

𝐶2

2
)[4Π𝐴⋄

2𝑝
𝛽′2𝑝(𝜉,𝑞)(𝑇2𝑒𝑖𝑛𝑡+𝑇2−𝑇1𝑒𝑖𝑛𝑡−𝑇1)+

𝑎𝑛
𝐾′

𝐶2

2
∫ 𝛽2𝑝
𝜉2
𝜉1

(𝜉,𝑞){2𝐴⋄
2𝑝

cosh2𝜉−𝐴2
2𝑝

}𝑑𝜉]

(4𝑞2−
𝑛2𝐶4

4𝐾′2
)

 (1.12) 

 

So, 

 

𝑇𝑛 = ∑
∑ 𝛽2𝑝(𝜉,𝑞2𝑝,𝑚)𝐶𝑒2𝑝(𝜂,𝑞2𝑝,𝑚)�̅�𝑛

∞
𝑛=1

Π∫ 𝛽2𝑝
2 (𝜉,𝑞2𝑝,𝑚)[cosh2𝜉−Θ2𝑝,𝑚]𝑑𝜉

𝜉2
𝜉1

∞
𝑝=0  (1.13) 
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Now substituting the values of �̅�𝑛 in (1.13), we get 

 

𝑇𝑛 = ∑
∑ 𝛽2𝑝(𝜉, �̇�2𝑝,𝑚)𝐶𝑒2𝑝(𝜂, 𝑞2𝑝,𝑚)∞

𝑛=1

Π∫ 𝛽2𝑝
2 (𝜉, 𝑞2𝑝,𝑚)[cosh 2𝜉 − Θ2𝑝,𝑚]𝑑𝜉

𝜉2

𝜉1

∞

𝑝=0

 

 

×
(2𝑞 +

𝑖𝑛

𝐾′

𝐶2

2
)

(4𝑞2 −
𝑛2𝐶4

4𝐾′2
)
[4Π𝐴⋄

2𝑝
𝛽′2𝑝(𝜉, 𝑞)(𝑇2𝑒

𝑖𝑛𝑡 + 𝑇2 − 𝑇1𝑒
𝑖𝑛𝑡−𝑇1) 

 

+
𝑎𝑛

𝐾′

𝐶2

2
∫ 𝛽2𝑝

𝜉2

𝜉1
(𝜉, 𝑞){2𝐴⋄

2𝑝
cosh2𝜉 − 𝐴2

2𝑝
}𝑑𝜉] (1.14) 

 

Thus 

 

𝑇 = 𝑇⋄ + ∑ 𝑇𝑛𝑒𝑖𝑛𝑡

∞

𝑛=1

 

 

𝑇 =
𝑇1 sinh2 (𝜉2 − 𝜉) + 𝑇2 sinh2(𝜉1 − 𝜉)

sinh 2 (𝜉2 − 𝜉)
 

 

+

[
 
 
 
 
 

𝑒𝑖𝑛
(2𝑞+

𝑖𝑛

𝐾′

𝐶2

2
)

(4𝑞2−
𝑛2𝐶4

4𝐾′2
)

∑ ∑ (𝜉,𝑞2𝑝,𝑚)𝐶𝑒2𝑝(𝜂,𝑞2𝑝,𝑚)∞
𝑚=1

∞
𝛽=1

[4Π𝐴⋄
2𝑝

𝛽′2𝑝(𝜉,𝑞)(𝑇2𝑒𝑖𝑛𝑡+𝑇2−𝑇1𝑒𝑖𝑛𝑡−𝑇1)+
𝑎𝑛
𝐾′

𝐶2

2
∫ 𝛽2𝑝
𝜉2
𝜉1

(𝜉,𝑞){2𝐴⋄
2𝑝

cosh2𝜉−𝐴2
2𝑝

}𝑑𝜉]]

Π∫ 𝛽2𝑝
2 (𝜉,𝑞2𝑝,𝑚)[cosh2𝜉−Θ2𝑝,𝑚]𝑑𝜉

𝜉2
𝜉1

]
 
 
 
 
 

 (1.15) 

 

Conclusion 

As in present case it’s in the form of double series. The rapidity of convergence is observed in above cases. It can be easily seen 

that first few terms are sufficient to give the shape of curve. Further it is observed the result hold good for positive Raileigh 

number. The result obtained shall be beneficial for the industrialist for selecting beneficial type of tube for giving higher output at 

lower cost. 
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