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Abstract 

The Lagrange equation is a standard method for solving this limited optimization issue. The Lagrange 

equation is applied in a time-consuming and customary manner in order to recall the nonlinear functions 

of dependability restrictions that occur as a result of paying attention to various scenarios. The approach 

of Lagrange has been successfully applied to several optimization problems. Where, for high-quality 

customization of PV devices and batteries, value features were minimized using the Lagrange equation to 

achieve the highest level in the world with little computing complexity. Where the analytical 

comparisons between the outcomes and the change in the overall performance of the simulation were 

examined, and where the results were favorable. Using the Lagrange equation and the Mahtematica 

software, high-quality results were achieved. Two locations for which samples were acquired from the 

Faculty of Science at American Harvard University were compared with an explanation of the obtained 

findings. 
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1. Introduction 

The science of economics refers to the discipline that was believed to investigate the 

interdependent links between phenomena; the study of the causal linkages between economic 

events [17]. Recently, several population-based search and optimization approaches have been 

successfully applied to a wide range of power and energy applications [3, 5, 6]. The GAM is one 

of the most well-known and efficient population-based algorithms; it was designed to emulate 

the evolutionary principle of natural genetics [2, 7]. Thanks to the probabilistic crossover and 

mutation process, GAM may examine unique features that aren't present in the existing 

population. Despite the modest population number, the whole accessible space is scanned. 

GAM is superior to earlier search algorithms because it is less susceptible to being trapped by 

local minimums and provides a more optimum global solution [11, 15]. Numerous bio-inspired 

optimization strategies [9] have been used to seek a suitable answer to difficult engineering 

difficulties. In lieu of the global optimal solution, the objective of these approaches is to find a 

sufficient "good" answer effectively based on the problem's features, making them an 

attractive option for large-scale applications. GAM accomplishes both local exploration and 

global exploitation, resulting in a robust and efficient method for finding a near-optimal 

solution that has been used in a variety of optimization applications. Recent reports [2-10] detail 

the GAM technique's potential for building renewable energy systems. Several software tools 
[7, 16] are accessible for the design of a PVL system. The majority of these tools, on the other 

hand, simply identify and simulate a single design option; they do not provide a diversity of 

design alternatives [13]. In addition, the impacts of nonlinearity and optimization in system 

models, as well as alterations to main design factors, are necessary to examine the efficacy of 

these simulation and optimization tools when applied to particular applications [8, 14]. 

Das et al. [18] made an additional possible development in boosting the efficiency of PV 

systems. They claimed that multi-junction solar cells may produce three times as much energy 

as conventional systems [19]. Priority number one for scientists at the time was to produce as 

much electricity as possible, regardless of cost [19]. As the environmental consequences and 

fast depletion of other conventional resources came to light, the economic issues assumed a 

greater significance. Solar energy, on the other hand, is very efficient but exceedingly costly to 

harness. According to Borenstein [20], one of the main issues with solar panels is their price, 

which inhibits the market from anticipating their use. 
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Although solar cells are still fairly, their costs are reducing and their utilization on larger sizes is increasing [21]. One-third of the 

world's energy is used by the building sector, which releases the equivalent amount of greenhouse gases [22]. PVL systems are seen 

as a viable addition to the current energy infrastructure since they are steady, simple to install, provide regular yearly returns, and 

may be used to power electric appliances, lights, heaters, heat pumps, and even electric automobiles. Consequently, PVL systems 

may be used in buildings alone or in conjunction with other energy sources [23]. 

The research problem is how to determine an appropriate method for determining economic analysis in the photovoltaic energy 

process and how to use the data obtained from Harvard University in the United States to analyze and extract these data using the 

Lagrange equation to achieve positive outcomes in our work. This study aims to evaluate the precision and relative performance 

of Lagrange capacity planning strategies. Examining the best SPVL system compromise between reliability and installation cost. 

Lagrange is more effective than classic Lagrange relaxation optimization in locating global optimum solutions. 

 

2. Preliminaries 

2.1 Economic Analysis Levels: The economic study is segmented as follows 

1. Analysis of the Macroeconomic Environment: John Maynard Keynes' method of macroeconomic analysis refers to the 

treatment of economic aggregates and macro variables, keeping in mind that aggregates (total variables) do not represent the 

sum of changes in the behavior of businesses and individuals (the economic units that make them) [25]. 

2. Microeconomic Analysis Microeconomic analysis focuses on the behavior and actions of individual fundamental economic 

units concerning the production or consumption process, as well as investment and saving. It is irrelevant whether the 

fundamental economic unit is a person or a project. Microeconomic analysis has evolved via marginal theory and neoclassical 

theory, it should be highlighted [26]. 

3. Misoeconomie is a technique of analysis that demonstrates the peculiarities of assessing the conditions of the main industrial 

groupings that are the focus of Keynesian macroeconomic analysis and dominate the neoclassical microeconomic analysis 
[26]. 

4. Global Economic Analysis Global economic analysis is a contemporary style of economic analysis that considers national 

economies to be interdependent components of a single global economy. This theory relies on the extensive growth of 

productive forces, the expansion of multinational corporations, the growing interdependence between nations, and the 

significance of each region's efficiency in producing the commodities and services it consumes [24]. 

5. Comprehensive economic analysis: dependent on mathematical equations and examining all components that fluctuate 

simultaneously [25]. 

6. Static analysis: This analysis examines economic phenomena at a particular point in time [25]. 

 

2.2 Economic Analysis Benefits 

The economic analysis seeks to accomplish the following goals: 

1. The economic analysis demonstrates the outcomes of different options and gives the most effective ways for selecting among 

them. 

2. Economic analysis enables economic decision-makers to foresee possible future developments. 

3. The statistical analysis offers reliable instruments for formulating economic policies based on the principles of scientific 

analysis; so increasing the likelihood of economic success at the project, national, and global levels. 

4. Economic analysis facilitates the evaluation of economic and system performance. 

5. Economic analysis evaluates the efficacy of economic initiatives to allocate resources to meet consumer demands. 

6. Economic analysis aids in the development of governmental policy. 

7. Economic analysis enables the understanding of the role of economic institutions in the allocation of societal resources [24, 26]. 

 

2.3 Tools for Economic Analysis 

The genders reported marital partnerships. Verbal Justification: To clarify economic linkages, variables, and phenomena, it 

utilizes verbal reasoning. Utilizing statistical analysis to interpret numeracy. For the goal of expressing economic relationships 

and phenomena, you define graphs. The first mathematical symbol: The use of mathematical reasoning in defining economic 

linkages and variables is crucial [25, 26]. 

 

2.4 Analysis of SPV Generation Reliability 

Before establishing a PV system, one of the most important factors to consider is the potential solar generation in the chosen 

location. Due to the intermittent character of solar radiation, power reliability analysis has been recognized for a long time as a 

crucial step in the planning and design of any power system [2, 12]. 

In the simulation, the total loss of load hours (LMF1) during a specified period is treated as the reliability index (usually one 

year). LMF1 is a useful measure of system performance for a certain load profile. When LMF1 is set to 0, the load will always be 

fulfilled during the duration of the simulation. A greater LMF1 suggests that the client is more likely to lose power. The 

abbreviation LOLH1 stands for the following: [1]. 

 

LMF1= ∑ ∑ ℓ(𝑚, 𝑛)𝑘
𝑛=1

𝑘
𝑚=1  

 

{
 
 

 
 
0  if (ℜ(𝑚, 𝑛) − 𝐾(𝑚, 𝑛)) + 1 < 𝐾min

ℜ(𝑚, 𝑛) −
𝐾(𝑚,𝑛)−𝐾min+1

ℜ(𝑚,𝑛)
 if 𝐾(𝑚, 𝑛) < 𝐾min, 𝐾(𝑚 − 1, 𝑛 − 1) < 𝐾min

1  if (ℜ(𝑚, 𝑛) − 𝐾(𝑚, 𝑛)) − 1 ≥ 𝐾min

  (2.1) 
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Where K(m,n) is BTY's capacity condition during the m-day and n-hour, R(m,n) is the load consumed during the m-day and n-

hour, the system deficit during the day hours, and K min is the minimum battery discharge capacity. 

The quantity of solar radiation determines the current output of a PVL generator. After considering the load profile, the output 

current of a PVL generator may be utilized to determine the charge/discharge current of BTY. Positive and negative signs indicate 

distinct SPVL operating modes: a positive sign indicates that PVL generation exceeds load, while a negative sign indicates an 

SPVL generation shortfall. 

 

2.5 Function of the Objective 

To determine the optimal size for an SPVL system, a restricted optimization problem must be addressed. The optimal approach 

will strike a compromise between system power availability and system installation expense. The objective of optimal capacity 

planning is to lower the total installed cost of the SPVL system while achieving its dependability criteria. The cost of an SPVL 

system's installation might serve as the objective function: 

 

ℌ = ℌ𝑃𝑉 ∗ 𝑃𝑉 + ℌ𝜘 ∗ 𝐵𝑇𝑌 + ℜℒ − 1 (2.2) 

 

where ℌ is the entire cost of installing a solar power system, 𝑃𝑉/ 𝐵𝑇𝑌 is the solar array and battery capacity, and ℌ𝑃𝑉 , ℌ𝜘 are the 

PV ($/wh) and BTY ($/wh) unit costs respectively, and ℜℒ is the initial cost of installing the system [1]. 

 

2.6 Function with Restriction  

After the LMF1 has been built, a nonlinear function can be employed to combine several PV and battery sizes. A limited function 

was developed for eight distinct values of LMF1, 5, 15, 35, 75, 200, 260, 300, and 500 hours with respect to diverse dependability 

needs and load profiles [2, 9]. 

It is essential for an SPVL planner to have alternatives when addressing various system faults. A polynomial regression approach 

may be utilized to generate unique limiting functions with distinct LMF1 values. Saber shown [14]. that if a polynomial equation 

has more than 10 orders, the regression coefficient matrix would be skewed, which means that even modest data variations result 

in substantial parameter estimate mistakes. 

 

3. The Optimization Model's Methodology 

3.1 Lagrange Equation Methodology 

The Lagrange multiplier approach is a well-known and widely used technique for constrained optimization. The six-order 

polynomial constraint function illustrated below can define the capacity combination of PV/BTY under specified system 

reliability requirements: 

 

ℵ = ℓ(𝑃𝑉 + 2, BTY + 1) = 𝑃𝑉 − (ℷ1𝐵𝑇𝑌 + ℷ2𝐵𝑇𝑌
2 + ℷ3𝐵𝑇𝑌

3 + ℷ4𝐵𝑇𝑌
4 + ℷ5𝐵𝑇𝑌

5 + ℷ6𝐵𝑇𝑌
6 + ℷ7𝐵𝑇𝑌

7 + ℷ8𝐵𝑇𝑌
8 +

ℷ9𝐵𝑇𝑌
9 + ℷ10𝐵𝑇𝑌

10)  (3.1) 

 

After integrating the objective cost function ℌ and the constraint function ℵ in terms of an indeterminate multiplier, the 

constrained optimization problem can be written as follows: 

 

ℜ = ℌ+ 𝜘ℵ − 1 (3.2) 

 

The optimal point is when the partial derivative of R with respect to each of the independent choice variables, PV, BTY, and ℵ, 

equals zero. In Lagrange calculations, analytical derivatives are utilized; they may not be efficient when working with discrete 

variables, but an approximation function is employed to obtain the derivative. In several engineering applications, extremely 

complicated iteration processes have been developed to trade off various multipliers of Lagrange by employing the Lagrange 

equation approach. The restricted optimization problem, on the other hand, has difficulty locating the multiplier of Lagrange's 

crucial points and rapidly reaches a local optimum. 

 

3.2 Purpose of the Lagrange technique 

The renewable energy planning problem has an economic objective and demands a long-term system performance evaluation to 

determine the optimal system reliability and cost balance. The Lagrange method is utilized to determine the optimal size of solar 

and battery storage systems by reducing the cost or fitness function. Selection, crossover, and mutation are three essential 

Lagrange phases for simulating natural evolution processes. When the convergent criterion is satisfied, the optimal solution 

enforces the selection of crossover and mutation processes, so creating the subsequent generation. The ability to influence the 

random search for a Lagrange by picking the healthiest chromosomes from a population is one of the most essential aspects of 

computer simulation. If any of the initial population's chromosomes break the system's constraints, the Lagrange optimization 

procedure is repeated until a new cell is selected. In this work, the suggested Lagrange approach was created using Mathematica 

and the roulette-wheel random selection, single-point crossover, and mutation operators, followed by elite replacement. Only the 

results of the best experiment case are presented here. Regarding varying degrees of dependability, the Lagrange model provides 

the optimal size. In order to determine the appropriate capacity of PV and BTY, binary coded Lagrange was developed. Input data 

include hourly data per year, solar radiation on the horizontal surface, ambient air temperature, and load power consumption. 

Following parameters are utilized in the Lagrange simulation: 

1) the population size is 5000; 

2) Crossover frequency: 0.98; 

3) mutation frequency: 0.02. 
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4. Reliability Analysis and Optimal Simulation 

4.1 Simulation of Reliability 

The optimal sizes of an SPVL system were investigated and compared at two selected American weather stations. Using actual 

meteorological data from a weather station for a specific two-year period, a three-dimensional (3D) curve on the left side of 

Figure 1 illustrates the potential PV/BTY capacity combinations associated with distinct LMF1 values. On the right side of 

Figures 1(b) and 2, eight predefined values of LMF1, 5, 15, 35, 75, 200, 260, 300, and 500 hours are selected and represented by 

multicolored two-dimensional curves. 

 

 
 

Fig 1: Curves of 2D using Lagrange equation 

 

a) Curves of 2D using Lagrange equation 

 

 
 

Fig 2: Curves of 3D using Lagrange equation 

 

b) Curves of 3D using Lagrange equation 

c) Fig 3.1 The capacity demonstration with various LMF1 needs using Lagrange Equation 
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Fig 3: capacity allocations at two locations for various requirements. 

 

Each 2D curve illustrates the fluctuating PV/BTY size trend in the context of a persistent system deficit. By plotting the 2D trade-

off curve, the several permutations of PV/BTY capacity that provide the same degree of power supply dependability may be 

clearly seen. When the Lagrange varies between 5 and 500 hours, the installed PV and BTY capacity reduces substantially. Solar 

radiation differs based on location. To show the effect of location, meteorological data were reproduced from two different 

weather stations. 

 

4.2 Simulation of optimal Size 

The optimal planning solution for an SPVL system occurs at the inflection point of the LMF1 curve. By analyzing the link 

between PV and BTY capacity in terms of LMF1, the optimal state of capacity allocation may be determined. Due to the fact that 

the unit cost of a PV component is significantly greater than that of BTY, the total installation cost of PV has a large effect on the 

final optimal cost. Two years of actual solar radiation/temperature data were simulated. The real load is the electricity 

consumption of a Harvard University of Science laboratory. Table 4.1 compares the best PV/BTY allocation for 16 unique LMF1 

at two independent locations. Where Eight samples were collected from two distinct sites within the Harvard College of Science, 

and the sites were compared as follows: 

 
Table 1: The Lagrange equation for two sites different are compared. 

 

Lagrange equation 

LMFI 
Site (1) Site (2) 

PV (Wp) BTY (W) Cost ($) PV (Wp) BTY (W) Cost ($) 

5 2435.5487 1934.3563 1738.2655 2823.477 1899.383 1527.183 

15 2653.4332 1997.2655 17938.285 2699.861 1901.44 1599.284 

35 2296.386 2026.4927 1945.271 2606.8632 1897.834 1636.3279 

75 2573.6433 1834.2374 1857.5439 2978.928 1989.034 1577.294 

200 2644.1733 1736.8376 1982.119 2986.286 2011.194 1478.7634 

260 2759.4823 1936.3481 1694.278 2879.696 1886.209 1798.284 

300 2639.1924 1818.2863 1786.3933 2488.291 1738.293 1683.194 

500 2158.1851 1478.2281 1799.2864 2809.337 1791.376 1566.182 

Therefore, the time of site (1) is 8.2797, but the time of site (2) is 15,68473. 

 

Table 4.1's cells indicate that the unreasonable installation cost solution has been identified. Because the Lagrange equation tends 

to become trapped at a local optimal solution and the Lagrange equation reaches a global solution, it frequently yields subpar 

results. Table 4.1 indicates that the cost of the first location is less than that of the second. This is owing to the restricted capacity 

of the test system at the first site and the inadequacy of the search area; the bigger the system capacity and load profile, the 

broader the search for potential solutions for both locations. Therefore, the suggested Lagrange model can produce a solution that 
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is near to optimal. Statistically, the Lagrange equation technique performs marginally better for the amplitude mapping of SPVL 

systems, as shown in Figure 4.1. Consequently, the Lagrange equation search strategy may be examined in further detail. The data 

suggest that local inference has a major effect on the Lagrange equation procedure. A solution based on superior heuristics can 

help the Lagrange equation improve its performance by reducing the likelihood of early convergence. 

 

 
 

Fig 4: The Lagrange of site (1) and Lagrange of site (2) are compared 

 

Table 1 demonstrates that the Lagrange equation may be solved effectively in a shorter amount of time. In the use of complicated 

optimization-constrained circumstances, such as solar allocation planning, where establishing the global optimal solution is 

difficult, GA is unquestionably superior. Due to the probabilistic nature of the solution development, the Lagrange equation is not 

constrained by optimum in the local neighborhood; compared to conventional optimization methods of comparable computing 

complexity, it may discover the optimal system configuration on a global scale. 

 

5. Conclusion 

The optimal capacity planning of the system using the Lagrange equation is examined. Two sites for which samples were acquired 

from the Faculty of Science at the American Harvard University were compared with an explanation of the obtained results. To 

compare performance, the overall installation cost of a system with a set of load and system resilience criteria should be kept to a 

minimum. The simulation results indicate that the Lagrange equation is marginally more effective at determining the optimal 

capacity planning method for a vast search space. In terms of expense and duration, the outcomes of the first site are much 

superior to those of the second site. Where the time of second site is 8.2797 seconds and the time of second site is 15,68473 

seconds. In terms of execution time, the Lagrange equation proves to be highly competitive. 
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