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Abstract 
In an econometric model, Non-nested hypothesis tests give the best path to test the specification of 
univariate and multivariate Regression models. The model introduced by Cox for evaluate different set of 
hypotheses was used to the alternative between two non-nested linear regression models. This paper 
examines the current literature on non-nested univariate and multivariate hypothesis testing in the context 
of nonlinear regression and related models. The paper also covered testing the hypothesis for non-nested 
univariate and multivariate nonlinear regression models. The principal part of the article derives the 
results and explains that they are identifiable as generalizations of the univariate-equation case. It is also 
revealed that the computation of the test statistic involves very little calculation beyond that necessary to 
estimate the models. 
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1. Introduction 
Applied econometrician had the experience of assessing a relapse model which appeared, from 
the outset, to be exceptionally acceptable, however which accordingly ended up, on nearer 
examination, to be bogus and deluding. The idea of economic data makes this inescapable. In 
recent era researchers are facing lot problems to find the best model to fit the linear and 
nonlinear regression models. In addition, especially when the research is at the beginning 
stages, the researcher may not know whether the existing models could possibly be true or not. 
The first step is to set the test the specification of each of the available models. Tests for 
multicollinearity, Consistency of parameter, heteroskedasticity, etc., obviously may be plays 
vita role in this perspective. 
In economic models, non-nested hypothesis provides a path to test the one or more non nested 
alternative. In the year (1962, 1963) Cox discussed briefly about non-nested models. In the 
regression analysis parameter, stability, multicolinearilty, serial correlation, heteroscedasticity 
etc are playing major role. But there are many tests cannot utilize the data that the model being 
tested is only one of the few model to make sense of similar sort of information. In much case, 
on the off chance that H0 is true, and then it follows any non-nested test, say H1 must be false. 
Such test commonly named as “Non-nested hypothesis” test. 
In an econometric model, if H0, tested with H1, then H1 can be condensed to H0 based on the 
few multiple constraints on its parameters. Similarly I production functions, Cobb-Douglas 
production function is nested with in C.E.S production function, because, the elasticity of 
substitution is unity. Based on this we will consider H0 and H1 may be non-nested, if H0 is not 
nested with H0. 
Test for model specification (or)te sting of no nested hypothesis are the models for correlation 
(or) omitted variables. We have sufficient literature is also available on model specification 
tests. Anselin L (1984) [25], Bera, A. and M. McAleer (1989) [3], Sawa (1978) [23], Sawyer 
(1980) [24] are contributed their effort on non-nested hypothesis test. 
 

2. Cox test 
The hypothetical writing on non-nested testing was basically initiated by Cox (1961, 1962). 
The principal benefit of the Cox test is, it made sense of overall and simple in nature. The 
fundamental course of action of this test is that one might test the legitimacy of an null 
hypothesis (H0) about how a group of data was created by looking at the noticed proportion of 
the values of the likelihood functions for H0 and for some non-nested alternative hypothesis, 
H1, with an estimate of the expected value of this likelihood ratio if H0 were true. 
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 If H1 fits either better or worse than it should if H0 were true, 

then H0 must be false. 

Consider the Cox test statistic 

 

        
0

0 0 1 0 1
n

1ˆ ˆ ˆ ˆT L L T P lim o L L
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 
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Here 0  and 1  vector parameters under the null and 

alternative hypothesis respectively. T is the no. of 

observations. 
 i
ˆL i 0,1  

 is the likelihood function and 

T0 is asymptotically normally distributed, with mean zero. 

The major problem in Cox test is, to evaluate the third term in 

(2.1). In (1973) Amemiya tested unconventional 

specifications of the distribution error term in regression 

models. Consequently Persaran and Deaton (1978) [15] 

expanded the Persaran derivation to the case of nonlinear 

univariate and nonlinear multivariate models. 

 

3. Non-nested univariate nonlinear regression model 

Consider univariate nonlinear regression model 

 

 0 0H :Y f  
   

 

Where  
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Here Y is dependent variable vector, 
 f 

 is function of 

vector 

 

 1 1H : Y g  
  

 

Where 

 

 
 2

1 ~ N 0, I 
        (3.2) 

 

The model H0 and H1 are assumed to be non-nested, then 

  

 0
n

1 ˆTP lim o L
T


        (3.3) 

 

Evaluated at 0̂  is simply 
 0
ˆL 

 then (3.1) becomes  

 

   0 1 1 0 0
n

1ˆ ˆ ˆT L T P lim o L
T

 
        

    (3.4) 

 

The concentrated log likelihood function for H1 is 
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Here            

Here 
ĝ

 denotes  ˆg 
, i.e., the estimated values of H1 

computed at maximum likelihood estimates r̂ . 

As we know, 
 1
ˆL 

 depends only on 
2

1̂ , then we have to 

find the Plim of 
2

1̂  under H0, in order to calculate the second 

term in (3.4). 
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Here f is the function of
 f 

. Here 
 Y f

 a vector follow 

normal distribution with mean zero and variance 

2

0  then the 

estimate 
2

1
ˆPlim

 is 
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Based on the (3.4) (3.5) and (3.10), the numerator for Cox test 
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Since nonlinear regression 
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An estimative variance of ‘To 

 

       
2 T 1

T T0

4

10

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆV To f g I F F F F f g




    
  

 (3.13) 

 

Where ‘F’ is the Marix derivatives of 
 f 

 w.r. to   

 According to the Pesaran, M. H. and Deaton, A. S. (1978), 

Cox test statistic for nonlinear regression model is 

 

 

o
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T
N

V̂ T
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        (3.14)  

 

The above No provides a test of Ho and it explains about the 

validity of ‘H1’. If No is less than zero, it is explaining that, H 

is rejected under the directions away from ‘H1’ and No is 

greater than zero then Ho is rejected in the favour of H1 

 

4. Non-nested multivariate nonlinear regression model 

Cox test and a number of methods of the t-test may be applied 

in many cases of multivariate nonlinear regression models. So 
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 according to that, 

The null hypothesis is 

 

  0

0 ti t1 tiH : Y f e 
  

 

Where  

 

 0

ti 0e N 0,
        (4.1) 

 

The Alternative Hypothesis is 

 

  1
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Where  

 

 1

ti 1e N 0,
        (4.2) 

 

Here ‘i’ tends to m equations and t tends to ‘T’ observation 

and j
is the mxn covariance matrix for the error terms 

corresponding to the hypothesis. Hj. 

The numerator for the test statistic is 

 

1
o

10

ˆ
T T / 2 log


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       (4.3) 

 

Where 1̂ is maximum likelihood estimate of 1 and 10  is 

analogously to 10
. 

There are several multivariate cases of t-test are available in 

the literature. The easiest artificial compound model 

analogous to the uni-variable model is 

 

Y = 
    ˆ1 f g e   

 

 

i.e., H0: 
    ti
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   (4.4) 

 

Under H0, Yt is the Covariance Matrix 0.
 Linearizing around 

the point 
ˆ0,    

 yields the Multivariable linear 

regression 
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When hti is an element matrix of the Txm. 
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Here 
ĝ

and f̂  are the Txm matrices with the elements of  

tiĝ
and tif̂ respectively. 

 

 

5. Conclusion 

This paper intended at contributing to the literature existing 

form of testing nonnested multivariate nonlinear regression 

models. Non-nested univariate and multivariate models take 

place regularly in practice and researchers are using a wide 

variety of methods to test such models against one or more 

alternatives. This paper has explained the significance of 

testing of non-nested univariate and multivariate models, 

especially in the context of linear, and nonlinear regression 

models. 
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