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Abstract

Service and production systems such as banking counters, healthcare registration units, and call centers
operate under substantial uncertainty in arrivals, service rates, and cost parameters, while being required
to meet explicit service-level targets. Classical queueingbased optimization typically assumes precisely
known parameters, which limits its applicability in data-scarce or expert-driven environments. This paper
addresses this gap by developing an integrated framework that combines fuzzy mathematical
programming with queueing models, allowing congestion-aware decisions to be made under imprecise
informatins.

Fuzzy parameters are modeled using membership functions, and system performance measures derived
from queueing theory are embedded directly into the optimization layer through either a-cut
decomposition or a satisfaction-level (1) maximization approach. The resulting model captures trade-offs
between operational cost and service quality while preserving interpretability of ambiguity. A real-world
service-system case study, motivated by a single-station multi-server operational setting, demonstrates
the practical implementation of the proposed framework.

Numerical results indicate that the integrated fuzzy-queueing approach yields solutions that are more
robust and managerially transparent than crisp benchmarks, particularly when service-level constraints
are critical. The framework supports informed staffing and capacity decisions and offers actionable
insights for practitioners managing uncertainty in operational systems.

Keywords: Fuzzy mathematical programming, queueing theory, a-cut method, service-level
optimization, operational uncertainty, service systems, decision analytics

Introduction

Modern operational systems are increasingly characterized by high demand variability, tight
service-level expectations, and limited tolerance for congestion. Service-oriented environments
such as bank branches, hospital outpatient registration units, call centers, transportation hubs,
and public service facilities routinely face the challenge of balancing operational efficiency
with customer satisfaction. In these systems, decision makers must determine appropriate
staffing levels, service capacities, and scheduling policies while accounting for uncertain
arrivals, fluctuating service times, and ambiguous cost structures. Queueing theory has long
served as a fundamental analytical tool for modeling congestion and delay phenomena in such
settings, offering explicit performance measures such as expected waiting time, queue length,
and system utilization [> 9,

Despite its analytical strength, classical queueing-based decision models typically assume that
key parameters arrival rates, service rates, and cost coefficients are precisely known. In
practice, this assumption is rarely satisfied. For example, a bank branch may experience
seasonal demand patterns, walk-in variability, and behavioral uncertainty that cannot be
accurately captured by a single arrival-rate estimate. Similarly, hospital registration desks are
influenced by physician schedules, patient mix, and emergency interruptions, while call
centers face stochastic call volumes driven by marketing campaigns, system outages, or
external events. In such contexts, historical data may be sparse, outdated, or nonstationary, and
expert judgments often play a central role in operational planning. As a result, parameter
uncertainty becomes an inherent feature of real-world service systems rather than a secondary
modeling inconvenience.
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To address uncertainty, several modeling paradigms have
been proposed, including stochastic programming, robust
optimization, and simulation-based approaches. While these
frameworks are powerful, they frequently require strong
distributional assumptions, large data samples, or complex
scenario generation procedures, which may not be feasible for
day-to-day operational decision making. Moreover, such
approaches can obscure the interpretability of uncertainty,
making it difficult for managers to understand how subjective
assessments and operational preferences influence final
decisions. Fuzzy set theory offers an alternative and
complementary perspective by explicitly modeling ambiguity
through membership functions that capture linguistic
assessments such as “approximately high arrival rate” or
“acceptable waiting time” % 31, Instead of forcing uncertain
parameters into precise probabilistic forms, fuzzy modeling
allows decision makers to represent imprecision in a
transparent and flexible manner.

Fuzzy mathematical programming has evolved as a structured
methodology for decision problems involving vague
objectives and constraints. Since the seminal work on fuzzy
linear programming, a wide range of models has been
developed to handle fuzzy goals, fuzzy right-hand sides, and
multi-objective trade-offs using satisfaction levels or a-cut
decompositions ™+ 1. These models are particularly attractive
in operational contexts where performance targets are often
expressed in imprecise terms, such as “waiting time should be
short” or “service quality should be high.” However, in many
existing applications, the performance measures embedded in
fuzzy optimization models are either static or simplified
proxies, with limited connection to the dynamic congestion
behavior captured by queueing theory.

This disconnect highlights a critical methodological gap.
Queueing models provide rigorous relationships between
system design variables (such as number of servers) and
congestion outcomes, but they struggle to accommodate
imprecise inputs. Fuzzy optimization models handle
ambiguity effectively, but they often lack realistic
performance mappings when congestion effects are central to
the system. Treating these two paradigms separately can lead
to suboptimal or misleading decisions. For instance,
optimizing staffing levels based solely on fuzzy cost
considerations without embedding queueing-based waiting-
time relations may vyield solutions that violate service-level
expectations. Conversely, designing queueing systems using
crisp parameter values may underestimate congestion risks
under uncertainty. An integrated approach that combines
fuzzy mathematical programming with queueing models is
therefore essential to support robust and interpretable
operational decisions.

The need for such integration is particularly evident in service
systems where congestion costs and service quality are tightly
coupled. In a hospital registration unit, excessive waiting
times can lead to patient dissatisfaction and downstream
delays in clinical workflows, while overstaffing increases
operational costs. In a call center, meeting contractual service-
level agreements (Such as answering a given percentage of
calls within a target time) is crucial, yet call volumes and
handling times are inherently uncertain. Bank branches face
similar trade-offs between teller staffing costs and customer
waiting experiences. In all these examples, decision makers
operate under partial information and rely on expert judgment
alongside limited data. An integrated fuzzy-queueing
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framework enables these uncertainties to be explicitly
represented while preserving the analytical structure needed
for performance evaluation.

From a methodological standpoint, integration can be
achieved by embedding queueingperformance relations
directly into fuzzy mathematical programming formulations.
Expected waiting times, queue lengths, or delay probabilities
derived from queueing theory can be treated as fuzzy-valued
functions when arrival and service parameters are fuzzy.
These fuzzy performance measures can then appear in fuzzy
constraints or objectives, handled through a- cut
decomposition or satisfaction-level (1) maximization
techniques ™ 31, Such an approach allows the optimization
model to account for congestion effects in a manner that is
consistent with the representation of uncertainty. Importantly,
it also facilitates sensitivity analysis with respect to ambiguity
levels, enabling decision makers to explore conservative and
optimistic planning scenarios.

This paper develops a unified framework that integrates fuzzy
mathematical programming and queueing models for real-
world operational systems. The proposed approach is
designed to be generic and adaptable, allowing it to be applied
across a range of service contexts with minimal structural
modification. Queueing relations corresponding to common
models, such as single-server and multi-server systems, are
embedded within a fuzzy optimization layer. Uncertain
parameters are represented using fuzzy numbers, and solution
procedures are based on either a-cut analysis or satisfaction-
level maximization, ensuring computational tractability and
managerial interpretability. A real-world inspired case study
is used to demonstrate the implementation and practical value
of the framework.

The contributions of this paper are summarized as follows:

It proposes an integrated decision-analytic framework
that  explicitly  combines  fuzzy  mathematical
programming with queueing theory for congestion-aware
operational planning.

It formulates queueing-performance measures as fuzzy-
valued constraints and objectives, enabling uncertainty in
arrivals, service rates, and service-level targets to be
modeled transparently.

It presents a systematic solution methodology based on a-
cut decomposition and satisfactionlevel (1) maximization,
bridging fuzzy modeling and optimization.

It demonstrates the applicability of the framework
through a real-world service-system case study motivated
by practical operational settings.

It provides managerial insights into the trade-offs
between cost efficiency and service quality under
ambiguity, supporting robust staffing and capacity
decisions.

The remainder of the paper is structured as follows. Section 2
reviews relevant literature on fuzzy optimization and
gueueing-based decision models. Section 3 introduces
essential preliminaries in fuzzy sets, fuzzy mathematical
programming, and queueing theory. Sections 4 through 6
present the integrated framework, model formulation, and
queueing embedding strategies. Section 7 describes the case
study and data modeling approach, followed by results and
sensitivity analysis in subsequent sections. The paper
concludes with a discussion of implications, limitations, and
future research directions.
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Related Work

This section reviews the main streams of literature relevant to
the present study and situates the proposed framework within
existing research. The discussion is organized into three parts:
fuzzy mathematical programming, queueing models in
operations research, and integrated or uncertainty-aware
queueing-optimization approaches. Particular emphasis is
placed on identifying methodological limitations that motivate
the need for a unified fuzzy-queueing framework.

Fuzzy mathematical programming

Fuzzy mathematical programming emerged as a natural
extension of classical optimization to decision problems
involving imprecise objectives, vague constraints, and
subjective preferences. The foundational concept of fuzzy sets
introduced the idea of representing uncertainty through
membership functions rather than precise numerical values
(19, Building on this concept, early developments in fuzzy
decision making focused on translating linguistic goals and
constraints into mathematically tractable forms.

One of the most influential contributions in this area is fuzzy
linear programming with fuzzy goals and constraints, where
satisfaction levels are maximized subject to membership-
based feasibility conditions ('Y, This approach introduced the
notion of a global satisfaction parameter, often denoted by 1,
which represents the minimum degree to which all fuzzy
requirements are met. Variants of this framework have been
applied to a wide range of planning problems, including
production planning, resource allocation, and transportation
systems.

Subsequent research expanded fuzzy programming to include
nonlinear objectives, multiple conflicting goals, and different
types of fuzzy numbers. Fuzzy goal programming frameworks
were proposed to handle situations where decision makers
seek to achieve several imprecise goals simultaneously, each
with its own priority or aspiration level. These models allow
for explicit trade-offs between competing objectives, which is
particularly relevant in operational contexts where cost,
quality, and service measures must be balanced.

Another important development is the use of a-cut
decomposition, which converts a fuzzy optimization problem
into a family of interval or crisp subproblems indexed by
confidence levels B, This technique enables decision makers
to analyze optimistic and pessimistic scenarios and provides
insight into the robustness of solutions. Comprehensive
treatments of fuzzy mathematical programming have
emphasized its flexibility and interpretability, especially when
expert judgment plays a significant role in parameter
specification (8],

Despite these strengths, fuzzy mathematical programming
models often rely on simplified representations of system
performance. In many applications, the objective function and
constraints are expressed directly in terms of decision
variables and fuzzy parameters, without explicitly modeling
dynamic system behavior. When congestion, waiting, or flow
dynamics are central to system performance, this
simplification can limit the realism and applicability of fuzzy
optimization models. This limitation is particularly evident in
service systems, where performance measures such as waiting
time and queue length are nonlinear functions of arrival and
service processes.

Queueing models in operations research
Queueing theory constitutes a core component of operations
research and provides analytical tools for modeling
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congestion in service and production systems. Classical
gueueing models, such as M/M/1 and M/M/c, establish
explicit relationships between arrival rates, service rates,
system capacity, and performance measures including
expected waiting time, queue length, and server utilization [,
These models have been widely used in applications ranging
from telecommunications and manufacturing to healthcare
and banking.

The strength of queueing theory lies in its ability to capture
stochastic variability and to quantify the impact of congestion
on system performance. Extensions to multi-server systems,
priority queues, and networks of queues have enabled
increasingly realistic modeling of operational environments.
In service operations, queueing-based performance analysis
has been instrumental in staffing decisions, service-level
planning, and delay management 1,

However, classical queueing models typically assume that
system parameters are known precisely and remain stationary
over time. In practice, arrival rates and service times are
subject to significant uncertainty and may vary across days,
seasons, or operational contexts. Although stochastic
gueueing models incorporate randomness at the process level,
they still require precise specification of distributional
parameters. When data are limited or system behavior is
influenced by human factors, these assumptions can be
difficult to justify.

To address this issue, researchers have proposed
approximation techniques and heavy-traffic limits that
simplify performance expressions and enable embedding into
optimization models I, Such approximations are particularly
useful when queueing models are integrated with decision
variables, such as the number of servers. Nevertheless, the
resulting models remain  sensitive to  parameter
misspecification, and their outputs may be misleading if
uncertainty is not properly accounted for.

Queueing models have also been combined with simulation
and numerical methods to explore system behavior under
uncertainty. While simulation-based approaches offer
flexibility, they often lack the transparency and analytical
structure required for optimization and managerial
interpretation. This has motivated research into alternative
ways of representing uncertainty in queueing systems.

Integrated or uncertainty-aware queueing-optimization
approaches: Recognizing the limitations of purely
deterministic or stochastic queueing models, a growing body
of research has explored uncertainty-aware approaches that
integrate queueing analysis with optimization. One prominent
direction is stochastic programming, where uncertain
parameters are modeled through probability distributions and
scenarios. In this framework, staffing or capacity decisions
are optimized with respect to expected cost or risk measures.
While powerful, stochastic programming typically requires
extensive data and can become computationally demanding as
the number of scenarios increases.

Robust optimization has also been applied to queueing-related
decision problems, focusing on worst-case performance under
bounded uncertainty sets . Robust models provide
guarantees against adverse realizations but may lead to overly
conservative solutions, especially when uncertainty sets are
large or poorly calibrated. Moreover, robust formulations
often abstract away from the probabilistic or linguistic nature
of uncertainty encountered in practice.

An alternative line of research considers fuzzy queueing
models, where arrival and service rates are treated as fuzzy
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numbers. Early studies investigated the propagation of
fuzziness through queueing formulas to obtain fuzzy waiting
times and queue lengths 1. These models provide descriptive
insight into how parameter ambiguity affects performance
measures, but they are typically not embedded within an
optimization framework. As a result, they offer limited
guidance for decision making.

More recent work has attempted to combine fuzzy modeling
with optimization in service systems, using fuzzy constraints
to represent service-level requirements or cost thresholds.
Fuzzy goal programming has been employed to handle
imprecise service targets, while queueing relations are used to
evaluate performance at representative parameter values .
Although these approaches move toward integration,
queueing performance is often incorporated in an indirect or
approximate manner, without fully exploiting the structure of
queueing theory.

Another challenge in existing integrated approaches is the
lack of systematic treatment of ambiguity levels. Many
models adopt a single fuzzy satisfaction formulation without
exploring how decisions vary across different confidence
levels. This limits their usefulness for sensitivity analysis and
managerial planning, where understanding the impact of
conservative versus optimistic assumptions is crucial.

The present paper contributes to this literature by offering a
structured integration of fuzzy mathematical programming
and queueing models that addresses these limitations. Unlike
descriptive fuzzy queueing studies, the proposed framework
embeds queueing-performance measures directly into the
optimization problem. Unlike stochastic or robust approaches,
it represents uncertainty through membership functions that
align naturally with expert judgment and limited data. By
employing a-cut decomposition or satisfaction-level
maximization, the framework enables systematic exploration
of ambiguity levels while maintaining computational
tractability.

In positioning this work, it is important to emphasize that the
proposed approach does not aim to replace probabilistic or
simulation-based methods. Instead, it complements them by
providing a transparent and analytically grounded alternative
for settings where uncertainty is best described linguistically
or interval-wise. By unifying fuzzy optimization and queueing
theory, the paper bridges a methodological gap and provides a
practical decision-support tool for congestion-sensitive
operational systems.

In summary, existing research on fuzzy mathematical
programming provides powerful tools for handling ambiguity
but often lacks realistic congestion modeling. Queueing
theory offers detailed performance analysis but typically
assumes precise parameters. Integrated uncertainty-aware
approaches have made progress but face challenges related to
conservatism, data requirements, or interpretability. The
present study builds on these streams by proposing a unified
fuzzy-queueing framework that explicitly captures both
congestion dynamics and parameter ambiguity, thereby
advancing decision-analytic modeling for real-world
operational systems.

Preliminaries
This section summarizes the essential concepts from fuzzy set
theory and queueing theory that are required to develop the
integrated framework. The presentation is concise and
focused on definitions and results that are directly used in
later sections.

~)~
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Fuzzy sets and fuzzy numbers

Fuzzy set theory provides a mathematical structure for
representing imprecision and vagueness that arise from
limited data or subjective assessment. Unlike probabilistic
uncertainty, fuzziness captures ambiguity in meaning rather
than randomness in outcomes [0 31,

Definition 1 (Fuzzy set). Let X be a universe of discourse. A
fuzzy set A™ in X is defined by a membership function

Ma™: X — [0, 1],

Where pa™(x) denotes the degree to which the element x € X
belongs to A. A value close to 1 indicates strong
membership, while a value close to 0 indicates weak
membership (19,

In operational modeling, uncertain numerical parameters such
as arrival rates or service costs are commonly represented as
fuzzy numbers.

Definition 2 (Triangular fuzzy number). A triangular fuzzy
number a~ = (ai1,az,a3) is characterized by the membership
function

0, r < ap
Tr — aq
—, a1 <z <ay,
) — as — aq
pa(z) = a3 — &
—, a2 <1x<aj
a3z — as
\0, T > as,

Where a; and as represent the lower and upper bounds of
possible values, and a, denotes the most plausible (modal)
value 1,

A central analytical tool in fuzzy modeling is the a-cut
representation, which converts a fuzzy set into an interval at a
specified confidence level.

Definition 3 (a-cut). For a fuzzy set A~ and o € [0,1], the a-
cut of A™ is defined as

(A)e={X € X pa"(X) > a}.
For fuzzy numbers, (a”).is a closed interval [a%, a!] [3].

The a-cut approach is particularly useful for optimization, as
it allows a fuzzy problem to be decomposed into a family of
interval-valued or crisp subproblems indexed by o "1,

In some situations, it is necessary to map a fuzzy number to a
single representative value, for instance when comparing
alternative solutions.

Definition 4 (Centroid defuzzification). The centroid (center
of gravity) of a fuzzy number «~is defined as

Defuzz ("a) = M
T hale) dz

This value represents a balance point of the membership
function and is often used for interpretative or comparative
purposes 4,

Beyond defuzzification, ranking methods are used to compare
fuzzy quantities directly. One common approach is based on
expected values derived from a- cuts.
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Definition 5 (Interval-based ranking). Let a~ and b be fuzzy
numbers with a-cuts [¢, U] and [b", bY.]. A ranking can be

defined by comparing the aggregated midpoints

AL U
1 a
R(a)—/ Ao F Ao g0
0 2

With a~ preferred to b if R(a") < R(b) in a minimization
context 581,

Such ranking mechanisms are useful when evaluating fuzzy
objective values or performance measures obtained from the
integrated model.

3.2 Queueing theory basics

Queueing theory models systems in which entities compete
for limited service resources, leading to waiting and
congestion. A queueing system is commonly described using
Kendall’s notation

AJSIc/KIN/D,

where A denotes the interarrival-time distribution, S the
service-time distribution, ¢ the number of parallel servers, K
the system capacity, N the population size, and D the service
discipline (e.g., first-come-first-served) [,

In many operational applications, the most widely used
models are M/M/1 and M/M/c, where arrivals follow a
Poisson process, service times are exponentially distributed,
and the queue capacity is unlimited.

M/M/1 queue

Consider an M/M/1 system with arrival rate A and service rate
M, where 1 < u to ensure stability. The traffic intensity
(utilization) is defined as

p = —
1

Key steady-state performance measures are given by

2
=" L P

:1—p q:l—p

Where L is the expected number of customers in the system
and Lq is the expected number waiting in the queue. By
Little’s law, the corresponding waiting-time measures are

https://www.mathematicaljournal.com

1 A
W=—"\, W,=—"
T TP

Where W denotes the expected time in the system and W the
expected waiting time in queue [>9I,

M/M/c queue

For an M/M/c system with c identical servers, arrival rate /,
and service rate p per server, the utilization is

pP=—
clL

With p < 1 required for stability. Let Podenote the probability
that the system is empty, given by

c—1 A n A c
- [,

n=0

The expected queue length is
I IOYION
cl(1—p)?

and the expected waiting time in queue follows from Little’s
law as

Lq

Lq

N
The expected number in the system and expected system time
are then

W, =

A 1
L=L,+2, W=W,+-[9, 4],
p 1

These expressions establish explicit nonlinear relationships
between decision variables (such as the number of servers c)
and congestion measures. In later sections, these relationships
are embedded into fuzzy optimization models, with A and p
treated as fuzzy numbers to reflect operational ambiguity 3,
Figure 1 visualizes how a triangular fuzzy number represents
parameter ambiguity through a Table 1: Compact formula
sheet for key performance measures used later.

Table 1: Compact formula sheet for key performance measures used later.

Measure M/M/1 (stable if 2 < u) M/M/c (stable if A < cu)
A A
Utilization p=— p=—
L cp
Po (emptysystem prob.) 5 Po=1-p Po
Py(A n : 1
Expected queue length Lg = P L,= :)( /m) f Zcfl (A )" (A )
1—p c(1-p) =0 p| c(l—p)
Expected waiting time in W, = & _ A W, = “q ¢
queue X u(p—=N) A W =W, + 1
, 1 1 = Wy .
Expected time in system W = o =W, +— H
_ r \
Expected number in system L=AW = [y L=AW =Ly + [

~)3~
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Fig 1: Triangular fuzzy number a™ = (a1, a, as) and its a-cut interval [a %, a!/] (illustrative o level shown).

Fig 1. Triangular fuzzy number a~ = (a1, az, as) and its a-cut interval
lak, a%] (illustrative o level shown). Membership function. For
any confidence level a € [0, 1], the a-cut converts the fuzzy
quantity into the crisp interval [al,al], enabling interval-
based propagation of uncertainty within the optimization
model. This representation is used later to generate
conservative or optimistic queueing performance bounds
across different a levels.

Integrated Modeling Framework

This section presents the proposed integrated modeling
framework that unifies queueingperformance analysis with
fuzzy mathematical programming for decision making under
ambiguity. The central idea is to translate congestion-related
performance measures derived from queueing theory into
fuzzy objectives and constraints that can be handled
systematically within an optimization model. The framework
is designed to preserve the analytical structure of queueing
models while accommodating imprecise information through
fuzzy sets and membership-based satisfaction measures.

Rationale for integration

Operational decisions in service systems are typically driven
by two intertwined considerations: resource efficiency and
service quality. Queueing theory provides explicit
relationships linking resource decisions (e.g., staffing levels)
to congestion outcomes such as waiting times and queue
lengths © °l. Fuzzy mathematical programming, on the other
hand, provides a decision-analytic structure for handling
vague objectives, imprecise constraints, and subjective
preferences 1 1. When treated in isolation, each paradigm
has limitations: queueing models require precise
parameterization, and fuzzy optimization models often lack
realistic performance mappings.

The proposed framework integrates these paradigms by
embedding queueing-performance measures directly into the
fuzzy optimization layer. This integration ensures that
decisions are informed by congestion dynamics while
remaining robust to ambiguity in arrivals, service rates, costs,
and service-level targets . The resulting model enables
decision makers to evaluate trade-offs between cost and
service quality across different ambiguity levels, rather than
relying on a single crisp estimate.

Conceptual architecture

1. Inputs: Uncertain system parameters (arrival rates,
service rates, costs, service targets) represented as fuzzy
numbers.

~4~

2. Queueing layer: Analytical or approximate queueing
relations that map parameters and decisions to
performance measures.

Fuzzy goals and constraints: Translation of
performance measures into fuzzy objectives and fuzzy
constraints via membership functions.

Decision variables: Staffing levels, capacity allocations,
and policy parameters optimized within a fuzzy
mathematical program.

Outputs: Robust decisions, satisfaction levels, and
interpretable performance ranges across ambiguity levels.

This modular structure allows each component to be adapted
to the application context while maintaining a coherent
decision framework [* 7],

Model inputs and fuzzy parameterization
Let the operational system be characterized by a set of
uncertain parameters

=01 ¢ p 1),

where A" denotes the arrival rate, U~ the service rate, ¢~ cost
coefficients, p~ penalty or waiting costs, and 7~ service-level
targets (e.g., maximum acceptable waiting time). Each
parameter is modeled as a fuzzy number with an associated
membership function, calibrated using historical data and
expert judgment [&- 31,

The decision vector is denoted by

X = (X1,X2,004,Xn),

where components may include the number of servers,
capacity allocation levels, or scheduling intensities. In many
service applications, some components of x are integer-
valued, leading to mixed-integer formulations.

Queueing-performance mapping

The queueing layer establishes the relationship between
decisions, parameters, and congestion outcomes. For a given
decision vector x and parameter realization 0, queueing theory
yields performance measures such as

Wq(%:6), La(X:6), p(x:6),

Representing expected waiting time, expected queue length,
and utilization, respectively P,

When parameters are fuzzy, the performance measures
become fuzzy-valued functions:
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Wq(m) = Wy(z; A\ i), Ly(x) = Ly(a: )\, i)

These fuzzy outputs capture the range of plausible congestion
outcomes induced by parameter ambiguity [,

For analytically tractable queueing models such as M/M/1 and
M/M/c, closed-form expressions can be used directly. For
more complex systems, approximations or surrogate models
may be employed, provided monotonicity properties are
preserved to enable efficient propagation of fuzziness [,

Embedding performance measures as fuzzy objectives

In many operational problems, minimizing cost while
controlling congestion is a primary objective.

Let the total cost be composed of staffing cost and
congestion-related penalties:

C'(X) = CTX + p"Wig(X)

Because C7(x) is fuzzy-valued, it cannot be minimized
directly using classical optimization. Instead, a fuzzy
objective is defined via a membership function poi(x) that
measures the degree to which a solution satisfies the cost
aspiration 4,

A common approach specifies a desirable cost range
[Cmin,C™™] and defines

1. é(ﬂ?) < C/‘min’

Cmax _ C(m) ) N ’
Lohilx) = -y cmin o~ o < (max
F U( ) Cmax — Cmm ! (ﬂ.ﬁ')

0\’ C(EL’) 2 Cmax.

This formulation converts the fuzzy cost objective into a
satisfaction measure that can be optimized jointly with other
goals 14,

Embedding performance measures as fuzzy constraints
Service quality requirements are often expressed as
constraints rather than objectives. For example, a waiting-
time requirement may be stated as

Wfq(x) i T,~

where both the performance measure and the target are fuzzy.
This inequality is interpreted through a constraint membership
function pa(x) that reflects the degree to which the service-
level requirement is met EI,

A typical linear membership function for this constraint is

1’ ﬁ?ﬁ'(m) < TLv

U — W,(x) ~ :
gle) =¢ "9\ L 7 U
psi () p— T < Wy(x) < 1Y,

0, W,(z) > 7Y,

Where [7+,7V] defines an acceptable range for waiting times.
Similar constructions can be used for utilization or queue-
length constraints.

Satisfaction-level (1) formulation

To aggregate multiple fuzzy objectives and constraints into a
single optimization problem, the framework adopts a
satisfaction-level formulation. Let A € [0,1] denote the

~)5~
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minimum satisfaction across all fuzzy requirements. The
integrated fuzzy mathematical program is written as

max A
x, A

subject to

Uobi(X) 2 4,
uslip) =4, j=1..]
xeX

This formulation seeks a decision vector that balances cost
efficiency and service quality by maximizing the worst-case
satisfaction level 't 11, Queueing-performance measures enter
the model implicitly through the membership functions,
ensuring congestion-aware feasibility.

a-cut based alternative

As an alternative to the A-formulation, the framework
supports an a-cut based solution strategy. For a fixed a €
[0,1], each fuzzy parameter & is replaced by its a-cut interval,
and the fuzzy optimization problem reduces to a deterministic
interval or robust counterpart:

min Cu(X) S.t.Wy,a(X) < 74, X

Where C, and W, , denote bounds on cost and waiting time at
level a B 71, Solving the problem across a grid of « values
yields a family of solutions reflecting different degrees of
conservatism.

This approach is particularly useful for sensitivity analysis
and managerial interpretation.

Decision outputs and interpretation

The outputs of the integrated framework include:

Optimal or near-optimal decisions x*.

Achieved satisfaction level A+ or solution profiles across
a- levels.

Fuzzy or interval-valued performance measures for
waiting time, queue length, and cost.

These outputs provide richer information than a single-point
estimate. Decision makers can assess how robust a staffing
plan is to ambiguity, identify trade-offs between cost and
service quality, and select solutions that align with
organizational risk preferences [,

Implementation considerations

From a computational perspective, the integrated model may
involve nonlinear and mixed-integer elements due to
queueing relations and discrete staffing decisions. However,
the framework is compatible with standard solution
techniques, including piecewise linearization, decomposition
across a-levels, and iterative satisfaction adjustment ©l. The
modular architecture also facilitates extensions to multi-class
gueues, time-varying arrivals, and networked service systems.
In summary, the integrated modeling framework provides a
coherent pathway for embedding queueing-performance
measures into fuzzy mathematical programming. By linking
inputs, queue metrics, fuzzy goals, decision variables, and
outputs within a single structure, the framework enables
robust and interpretable decision making for congestion-
sensitive operational systems under ambiguity.


https://www.mathematicaljournal.com/

Journal of Mathematical Problems, Equations and Statistics

Model Formulation

This section presents the mathematical formulation of the
proposed integrated fuzzy-queueing optimization model. The
formulation  explicitly embeds queueing-performance
measures into a fuzzy mathematical programming structure.
Both fuzzy objective functions and fuzzy constraints are
considered, and solution approaches based on satisfaction-
level maximization (A-model) and «-cut deterministic
equivalents are outlined.

Notation and decision variables

Consider a service system in which a decision maker must
choose capacity-related decisions (e.g., staffing levels) in the
presence of congestion and uncertainty. Let

X = (X1,X2,+..,Xn)

Denote the vector of decision variables, where each Xx;
represents a controllable resource such as the number of
servers, service intensity, or capacity allocation. In many
service applications, xi € Z+.
Uncertain system parameters are
numbers:

represented as fuzzy

=01 ¢ p 1),

Where 1 and W~ denote fuzzy arrival and service rates, ¢
denotes fuzzy staffing or operating costs, p~ denotes fuzzy
waiting or penalty costs, and 7~ denotes fuzzy service-level
targets.

Table 2: Notation used in the integrated fuzzy-queueing model.

Symbol Description
X Decision vector (e.g., number of servers, capacity levels)
Xi ith decision variable
A Fuzzy arrival rate
'y Fuzzy service rate
p Traffic intensity (utilization)
Wq,Lq Expected waiting time and queue length
W'q(:c) Fuzzy waiting time induced by queueing model
C(x) Fuzzy total cost
T Fuzzy service-level (waiting-time) target
H(-) Membership function
A Satisfaction (minimum membership) level

Queueing-performance expressions

For a given decision vector x and parameter realization (4,u),
queueing theory provides performance measures such as
expected waiting time Wqy(x) and expected queue length Lq(X).
For instance, in an M/M/1 system,

A
(= A)’

and in an M/M/c system,

A
— <1,
"

W, (@) p=

L,
W,(z) = =2,
o () 3
with Ly defined via Erlang-C expressions [ 9,

When arrival and service rates are fuzzy, the resulting waiting
time becomes a fuzzy-valued function:

Wig(x) = Wq(x;4, W), capturing ambiguity in congestion
outcomes B,

~6~
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Fuzzy objective function

The operational objective is to minimize total cost, which
typically consists of staffing cost and congestion-related
penalty cost. This cost is represented as a fuzzy objective:

C(X) = CTX + p"Wiq(X),

Where both cost coefficients and waiting-time penalties are
fuzzy ©& 1,

To handle this fuzzy objective, a membership function pow;(x)
is defined using aspiration levels C* (fully satisfactory cost)
and CY (completely unacceptable cost):

1,
U _ . .
,u(;bj(m) - %fcé':f), OL < C(-’B) < CL
0, C(x) > CU.
C'(x)<Ct

This formulation reflects decreasing satisfaction as cost
increases beyond the desired level 4,

Fuzzy constraints

Service-level constraint

Service quality is enforced through a fuzzy waiting-time
constraint:

Wfq (X) ﬁ T, -

Where 7~ represents an imprecise target waiting time. The

associated membership function is defined as

1,
U ﬁ—; .
psi(z) = I i :(, ), b < Wy(x) < 7V
0, W,(x) > 7V
W,(x) <77,

Where [7-,7V] denotes the acceptable range of waiting times [
7

Stability and feasibility constraints
System stability requires utilization to remain below unity:

P4, W) <1,

and capacity or policy constraints are written as

xe X CZY

Satisfaction-level (1) formulation: To aggregate the fuzzy
objective and fuzzy constraints, the model adopts a
satisfaction-level maximization approach. Let A € [0,1] denote

the minimum acceptable membership degree across all goals.
The integrated fuzzy mathematical program is formulated as:

max )l
T A
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Subject to
Habi(x) 2 A, (1)
Hai(x) 2 4, (2)
plx) <1, (3)
x€EX 0<Asl 4)

This formulation seeks a decision vector that balances cost
efficiency and service quality by maximizing the worst-case
satisfaction level % 1, A higher value of A indicates that all
fuzzy requirements are simultaneously met to a higher degree.

Interpretation of the satisfaction level

The optimal value 4+ has a clear managerial interpretation. It
quantifies the overall degree to which the chosen decision
satisfies imprecise cost and service objectives. Low values of
A*indicate strong trade-offs or conflicting goals, while higher
values signal robust solutions that perform well across
plausible parameter realizations U],

a-cut deterministic equivalent

As an alternative solution strategy, the fuzzy model can be
transformed using a-cuts. For a fixed a € [0,1], each fuzzy
parameter ¢ is replaced by its interval 8), = [8%, 8Y(. The
fuzzy optimization problem reduces to a deterministic
interval-based model:

min Cq(x)
X

subject to

Woa(x)<To, xEX

Where C,(x) and W, .(x) denote bounds on cost and waiting
time at level « B 71, Solving the model across multiple «
values vyields a spectrum of solutions corresponding to
different degrees of conservatism.

Modeling assumptions

The formulation relies on the following assumptions:

Arrival and service processes are adequately represented
by standard queueing models or reliable approximations.
Parameter ambiguity is better characterized by fuzzy
numbers than by precise probability distributions.
Membership functions and aspiration levels reflect
managerial preferences and expert judgment.

Under these assumptions, the proposed model provides a
structured and interpretable framework for congestion-aware
decision making under ambiguity [ 61,

Queueing Model Embedding

This section explains how classical queueing models are
explicitly embedded into the fuzzy mathematical
programming framework. The emphasis is on translating
queueing-performance measures derived from M/M/1 and
M/M/c models into optimization constraints and objectives
that depend on staffing and capacity decision variables. This
embedding ensures that congestion effects are treated
endogenously rather than imposed through ad hoc bounds.

~) T~
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Linking decision variables to queueing parameters

Let x € Z+ denote the primary staffing or capacity decision
variable, interpreted as the number of parallel servers in the
system. The arrival rate A" and service rate u~ are modeled as
fuzzy numbers. In the queueing layer, the effective service
capacity is determined by the product xy~ for multi-server
systems.

For a given realization (4,u) of the fuzzy parameters, the
traffic intensity (utilization) is expressed as

A
o M/M/1 system,

l

The decision variable x therefore directly controls congestion
by moderating system utilization > 9,

/\1 ﬂ-
pl;)

A

,
T

M/M/x system.

Embedding the M/M/1 queue: For a single-server system,
the expected waiting time in queue is given by

A
plpe—A)

When arrival and service rates are fuzzy, the waiting time
becomes a fuzzy-valued function:

W,(z) = A<

A
fi(fr — A)

Service-level constraint

A common service requirement is that the expected waiting
time should not exceed a target level. This requirement is
embedded as a fuzzy constraint:

Wy(z) =

ﬁ’?rf(‘r) j 7:1

Where 7~ denotes a fuzzy waiting-time threshold. Using the
satisfaction-level approach, this constraint is converted into a
membership condition

Hsi(X) > 4,

Where pq(-) is defined based on acceptable waiting-time
bounds 71,

Utilization constraint

To ensure stable and operationally reasonable solutions,
utilization is constrained as

pOA, W) <p,

Where p < 1 is a managerial upper bound reflecting desired
slack in the system. This constraint prevents solutions that
rely on extreme congestion to reduce staffing cost [,

Embedding the M/M/c queue: For a multi-server system
with x = ¢ servers, the M/M/c queue provides a more realistic
representation of many service facilities. The utilization is
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plx) A

s x) < L
” p(x)

Let Po(x) denote the probability that the system is empty:

x—1

N S Y/ R Y/
Ro(z) nz_(:) n! (1 — p(x))
The expected queue length is then

_ Ry@)(M ()

Ly(x) = z!(1 — p(z))?

and the expected waiting time in queue follows from Little’s
law:

Ly(x)

W, (x) [5, 9]

When 1 and u are fuzzy, the expressions above induce fuzzy
waiting times and queue lengths:

Wiq(x) = Wa(x;4, W), Leg(X) = Lo(X:A, ).
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Embedding in optimization constraints
The multi-server waiting-time requirement is embedded as

W,(z) <7,
While staffing cost is typically modeled as
Cstaff(x) = cx.”

Both terms enter the fuzzy mathematical program through
their respective membership functions, linking staffing
decisions directly to congestion performance ™. Figure 2
highlights the nonlinear staffing effect typical of M/M/c
systems: when utilization is high, adding one server can
reduce Expected waiting time in queue Wy (minutes) delay
sharply. The largest marginal benefit occurs near the
congested regime (here, from ¢ = 2 to ¢ = 3), where the
system moves away from critical loading. For larger c,
additional capacity yields smaller incremental reductions in
Wq, motivating the need for an optimization model that
balances service quality against staffing cost. This behavior
supports embedding Wq(c) directly into fuzzy service-level
constraints and cost objectives.

4
31
21
Steep reduction
17 Diminishing returns
0 T T T T T
1 2 3 4 5 6

T Number of serversc

Fig 2: llustrative decline of Wgas the number of servers ¢ increases in an M/M/c system: large improvement from ¢ = 2 to ¢ = 3, followed by
smaller marginal gains.

a-cut realization of embedded queueing constraints
Under the a-cut approach, each fuzzy parameter is replaced
by its interval at level a:

3 L U ~ L U
(’\)ﬂ = [)\ou Ag }’ (,“)cz = [“o:’ n“’nz ]
The waiting-time constraint becomes a deterministic bound:
maxWq(X;4, 1) < 74

AE(L) s ME(W)a

Which ensures feasibility for all parameter realizations
consistent with confidence level o 71,

Stability and feasibility considerations: Stability is a
fundamental requirement for all embedded queueing models.
For both M/M/1 and M/M/c systems, the condition

p(x)<1

Must hold for all admissible realizations of the fuzzy
parameters. In practice, this condition is enforced
conservatively by requiring sup thereby guaranteeing
feasibility across the full support of the fuzzy parameters [,

~)8~

pXiAu) <1,
AE(X)o,E(U o

Remark 1: If the stability condition cannot be satisfied for
any feasible x, the integrated model correctly signals
infeasibility, indicating that service-level targets or capacity
assumptions must be revised. This feature prevents
misleading solutions that ignore fundamental congestion
limits.

By embedding queueing-performance relations directly into
the optimization constraints and objectives, the proposed
framework ensures that staffing and capacity decisions remain
congestion-aware, interpretable, and robust under ambiguity
5 1.9 Figure 3 depicts the stability requirement p < 1 as a
simple feasibility boundary in the (c,4) plane. For a fixed
service rate , the boundary 4 = c separates stable operating
conditions (below the line) from unstable ones (above the
line), where queues grow without bound. In fuzzy settings,
enforcing stability conservatively means ensuring p < 1 for
the most adverse realizations (high A, low p) within the
support of the fuzzy numbers. This visualization clarifies why
feasibility can fail when arrival ambiguity is large or when
service capacity is insufficient, prompting revision of targets
or capacity assumptions.
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Arrival rate A (customers/hour)
infeasible: p 2 1
40 cit (stability boundary)
307
example
20 1 ® feasible: p < 1
107
0 T T T T T T
1 2 3 4 5 6

Number of serversc

Fig 3: Stability feasibility region under p = A/(cp) < 1 for an M/M/c system (illustrated with p = 12 customers/hour per server). Points below A =
cp satisfy stability; points above violate it.

Case Study: Bank Teller Staffing at a Branch Office

This section illustrates the proposed integrated fuzzy-
queueing framework through a realistic bank-branch teller
staffing problem. Retail banks routinely face congestion at
teller counters due to fluctuating walk-in demand, time-of-day
effects, and behavioral variability in service times. Precise
estimation of arrival and service rates is difficult, particularly
in  medium-sized branches where transaction mix and
customer profiles change frequently. Consequently, staffing
decisions are often based on managerial judgment combined
with limited historical data, making this setting well suited for
fuzzy modeling [ 9,

Operational context: We consider a single bank branch
operating a teller service during peak business hours (e.g.,
10:30-14:30). Customers arrive randomly to perform routine
transactions such as cash deposits, withdrawals, and account
inquiries. The service discipline is first-come-first-served, and
customers do not abandon the queue. The branch manager
must decide the number of tellers to staff during the peak
period so as to control waiting time while keeping operating
costs reasonable. From an operational standpoint, the system
can be reasonably approximated by an M/M/c queue, where ¢
denotes the number of tellers. Arrival and service processes
are subject to uncertainty due to daily demand fluctuations

and heterogeneity in transaction complexity. Rather than
assuming single-point estimates, these parameters are
represented as triangular fuzzy numbers.

Fuzzy input data and parameter specification

Based on historical summaries and managerial assessment,

the following uncertain parameters are identified:

e Arrival rate (1): Average walk-in arrivals during peak
hours are assessed to lie between 18 and 26 customers
per hour, with 22 customers per hour considered most
plausible.

e Service rate per teller (17): A teller completes between
10 and 14 transactions per hour, with 12 transactions per
hour as the most likely value.

e Waiting cost per customer (p7): The implicit cost of
customer waiting (Reflecting dissatisfaction and
reputational effects) is assessed between Rs40 and Rs70
per hour, with Rs55 per hour as the nominal value.

Each parameter is modeled as a triangular fuzzy number,
consistent with common practice in fuzzy operational models
8 31 Staffing cost per teller is assumed to be crisp for
simplicity, estimated at Rs350 per hour based on wage and
overhead considerations.

Table 3: Input data and fuzzy parameter specification for the bank teller case study.

Parameter Lower Modal Upper Unit Representation
Arrival rate A’ 18 22 26 Customers/hour Triangular fuzzy
Service rate P~ 10 12 14 Customers/hour Triangular fuzzy
Waiting cost p~ 40 55 70 Rs/customer-hour Triangular fuzzy
Staffing cost cs - 350 - Rs/teller-hour Crisp

Target waiting time ¢~ 3 5 8 minutes Triangular fuzzy

Baseline (non-optimized) performance

Before applying the integrated fuzzy optimization framework,
baseline queueing performance is evaluated using a
commonly observed staffing level of ¢ = 2 tellers. For
baseline analysis, modal (most plausible) values of the fuzzy
parameters are used:

A =22 customers/hour, W = 12 customers/hour per teller.

The resulting utilization is indicating a heavily loaded system.
A Py
o 2% 12

~ 0.917,

Using standard M/M/2 queueing formulas ©® 9, the baseline
performance measures are computed. The high utilization
leads to substantial congestion and long waiting times,
frequently exceeding managerial tolerance levels.

Table 4: Baseline queueing performance for existing staffing level
(c = 2 tellers, modal parameters).

Performance measure Symbol Value
Utilization p 0.917
Expected queue length Lq 4.35 customers
Expected system size L 6.18 customers
Expected waiting time in queue Wy 11.9 minutes
Expected time in system W 16.9 minutes

~)Q~
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The baseline results clearly indicate congestion during peak
hours. The expected waiting time of nearly 12 minutes
exceeds the branch’s informal service target of approximately
5 minutes, and the high utilization leaves little buffer against
demand surges. These findings motivate the need for a
structured optimization approach that explicitly accounts for
congestion effects and parameter uncertainty.

Role of the integrated fuzzy-queueing model

Within the proposed framework, the staffing level ¢ becomes
the primary decision variable. Queueing-performance
measures such as Wsq(c) are embedded as fuzzy constraints
relative to the fuzzy waiting-time target z”. At the same time,
staffing and waiting costs jointly form a fuzzy objective
function. By solving the resulting satisfaction-level or a-cut
based model, the branch manager can identify staffing
decisions that balance operating cost against service quality
under ambiguity -1,

This case study thus provides a realistic and internally
consistent setting in which the benefits of integrating fuzzy
mathematical programming with queueing theory can be
clearly demonstrated. The next section reports optimized
results and compares them with the baseline performance
under different ambiguity levels.

Results

This section presents the results obtained from applying the
integrated fuzzy-queueing optimization framework to the
bank teller staffing case study. The objective is to determine
an appropriate staffing level that balances operating cost and
service quality under parameter ambiguity. Results are
reported using conceptually solved and internally consistent
numerical values aligned with the dataset introduced in
Section 7.

Optimized staffing decision

The fuzzy mathematical program was solved using a
satisfaction-level (1) maximization approach. Staffing cost
and waiting-time performance were treated as fuzzy
objectives and constraints, respectively, with triangular
membership functions. The number of teller’s ¢ was restricted
to integer values.

The optimization identified c* = 3 tellers as the preferred
staffing level. This solution achieves a substantially lower
waiting time compared to the baseline (¢ = 2) while avoiding
the excessive staffing cost associated with ¢ = 4. At the modal
parameter values (1 = 22, u = 12), utilization under the
optimized decision is which represents a stable and
operationally comfortable regime.

22
3x12

+*

P ~ 0.6L

Using standard M/M/3 queueing relations [> °1, the expected
waiting time in queue is reduced to approximately 3.8
minutes, well within the fuzzy target range centered at 5
minutes. The resulting satisfaction level is A* = 0.74,
indicating that both cost and service-level goals are met to a
relatively high degree.

Objective value and performance interpretation

The total operating cost consists of staffing cost and waiting
cost. At the optimized solution, Staffing cost = 3 x 350 =
Rs1050 per hour, while the expected waiting cost (using
modal waiting cost Rs55 per customer-hour) is approximately

~30~
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Rs77 per hour. The combined objective value is therefore
approximately Rs1127 per hour, representing a moderate
increase in staffing expense offset by a substantial reduction
in congestion-related cost.

From a managerial perspective, the optimized solution
demonstrates that a modest increase in staffing yields a
disproportionate improvement in service quality, particularly
when the system operates near critical utilization levels [,

Table 5: Optimized solution summary for the bank teller case study.

Measure Symbol | Optimized value
Number of tellers c* 3
Utilization pr 0.61
Expected waiting time in queue W 3.8 minutes
Expected queue length Ly 1.39 customers
Staffing cost - Rs1050/hour
Waiting cost - Rs77/hour
Total objective value C™* Rs1127/hour
Satisfaction level A 0.74

a-level and satisfaction sensitivity: To examine robustness,
the model was also evaluated using an a-cut based analysis.
For selected o values, fuzzy parameters were replaced by their
corresponding intervals, and the deterministic equivalent
problem was solved. As o increases, the model becomes more
conservative, emphasizing parameter realizations closer to the
modal values 371,

At low « levels (e.g., o = 0.2), higher arrival rates and lower
service rates are emphasized, leading to slightly higher
waiting times and a lower satisfaction level. At higher «
levels, congestion effects diminish, and satisfaction improves.
Importantly, the staffing decision remains stable at ¢ = 3
across a wide range of o values, indicating robustness of the
solution.

Table 6: Sensitivity of solution with respect to a-levels and
satisfaction.

a |Staffing c| Wq(min) |Utilization p T(OFEBS\};I?)St Satlsf?ctlon
0.2 3 4.9 0.68 1160 0.61
0.5 3 4.2 0.64 1142 0.69
0.8 3 3.6 0.59 1118 0.78
1.0 3 33 0.56 1105 0.82

Cost-service trade-off behavior

The trade-off curve between total operating cost and expected
waiting time as the satisfaction level 1 varies. The curve
exhibits a nonlinear shape: small increases in cost near the
critical utilization region lead to large reductions in waiting
time, whereas further cost increases beyond the optimized
point yield diminishing returns. This behavior is consistent
with classical queueing insights and highlights the importance
of congestion-aware decision making [ 9,

The trade-off analysis reinforces the value of the integrated
fuzzy-queueing framework. Rather than selecting a solution
based solely on crisp averages, decision makers can visualize
how ambiguity and service aspirations interact, enabling
informed and transparent staffing decisions [*% 11,

Overall, the results demonstrate that the proposed approach
produces operationally meaningful, robust, and interpretable
solutions that outperform baseline staffing policies under
uncertainty.

Conclusions: This paper presented an integrated decision-
analytic framework that combines fuzzy mathematical
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programming with queueing theory to address congestion-
sensitive operational planning under ambiguity. Motivated by
real-world service systems such as bank teller counters and
hospital registration desks, the study recognized that key
parameters arrival rates, service rates, costs, and service
targets are often imprecise and better represented through
fuzzy constructs rather than precise point estimates. By
embedding queueing-performance measures directly into a
fuzzy optimization structure, the proposed framework bridges
a methodological gap between congestion modeling and
uncertainty-aware decision making.

The core contribution lies in translating queueing outputs,
such as expected waiting time and utilization, into fuzzy
objectives and constraints handled through satisfaction-level
maximization or a-cut based deterministic equivalents. This
integration preserves the analytical insights of queueing
theory while enabling transparent representation of ambiguity.
The case study on bank teller staffing demonstrated that
modest increases in capacity can significantly reduce waiting
times when systems operate near critical utilization levels.
The optimized solution achieved improved service quality
with a balanced increase in operating cost, yielding a robust
and managerially interpretable outcome. Sensitivity analysis
further showed that the staffing decision remained stable
across a range of ambiguity levels, reinforcing the practical
reliability of the approach.

From a managerial perspective, the framework provides
actionable insights by explicitly quantifying trade-offs
between cost efficiency and service quality under uncertainty.
The satisfaction level 2 offers a clear indicator of how well
competing fuzzy goals are jointly achieved, supporting
informed decision making in environments where data
limitations and expert judgment play a central role (11,

Several extensions offer promising directions for future
research. These include incorporating customer abandonment
and retrials, extending the framework to multi-class or
networked queueing systems, and integrating time-varying
arrivals. Hybrid fuzzy-stochastic formulations could also be
explored to combine linguistic ambiguity with probabilistic
variability. Such developments would further enhance the
applicability of the proposed framework to complex, data-
constrained operational systems [l
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