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Abstract 

Service and production systems such as banking counters, healthcare registration units, and call centers 

operate under substantial uncertainty in arrivals, service rates, and cost parameters, while being required 

to meet explicit service-level targets. Classical queueingbased optimization typically assumes precisely 

known parameters, which limits its applicability in data-scarce or expert-driven environments. This paper 

addresses this gap by developing an integrated framework that combines fuzzy mathematical 

programming with queueing models, allowing congestion-aware decisions to be made under imprecise 

informatins. 

Fuzzy parameters are modeled using membership functions, and system performance measures derived 

from queueing theory are embedded directly into the optimization layer through either α-cut 

decomposition or a satisfaction-level (λ) maximization approach. The resulting model captures trade-offs 

between operational cost and service quality while preserving interpretability of ambiguity. A real-world 

service-system case study, motivated by a single-station multi-server operational setting, demonstrates 

the practical implementation of the proposed framework. 

Numerical results indicate that the integrated fuzzy-queueing approach yields solutions that are more 

robust and managerially transparent than crisp benchmarks, particularly when service-level constraints 

are critical. The framework supports informed staffing and capacity decisions and offers actionable 

insights for practitioners managing uncertainty in operational systems. 

 

Keywords: Fuzzy mathematical programming, queueing theory, α-cut method, service-level 

optimization, operational uncertainty, service systems, decision analytics 

 

Introduction 

Modern operational systems are increasingly characterized by high demand variability, tight 

service-level expectations, and limited tolerance for congestion. Service-oriented environments 

such as bank branches, hospital outpatient registration units, call centers, transportation hubs, 

and public service facilities routinely face the challenge of balancing operational efficiency 

with customer satisfaction. In these systems, decision makers must determine appropriate 

staffing levels, service capacities, and scheduling policies while accounting for uncertain 

arrivals, fluctuating service times, and ambiguous cost structures. Queueing theory has long 

served as a fundamental analytical tool for modeling congestion and delay phenomena in such 

settings, offering explicit performance measures such as expected waiting time, queue length, 

and system utilization [5, 9]. 

Despite its analytical strength, classical queueing-based decision models typically assume that 

key parameters arrival rates, service rates, and cost coefficients are precisely known. In 

practice, this assumption is rarely satisfied. For example, a bank branch may experience 

seasonal demand patterns, walk-in variability, and behavioral uncertainty that cannot be 

accurately captured by a single arrival-rate estimate. Similarly, hospital registration desks are 

influenced by physician schedules, patient mix, and emergency interruptions, while call 

centers face stochastic call volumes driven by marketing campaigns, system outages, or 

external events. In such contexts, historical data may be sparse, outdated, or nonstationary, and 

expert judgments often play a central role in operational planning. As a result, parameter 

uncertainty becomes an inherent feature of real-world service systems rather than a secondary 

modeling inconvenience. 
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 To address uncertainty, several modeling paradigms have 

been proposed, including stochastic programming, robust 

optimization, and simulation-based approaches. While these 

frameworks are powerful, they frequently require strong 

distributional assumptions, large data samples, or complex 

scenario generation procedures, which may not be feasible for 

day-to-day operational decision making. Moreover, such 

approaches can obscure the interpretability of uncertainty, 

making it difficult for managers to understand how subjective 

assessments and operational preferences influence final 

decisions. Fuzzy set theory offers an alternative and 

complementary perspective by explicitly modeling ambiguity 

through membership functions that capture linguistic 

assessments such as “approximately high arrival rate” or 

“acceptable waiting time” [10, 3]. Instead of forcing uncertain 

parameters into precise probabilistic forms, fuzzy modeling 

allows decision makers to represent imprecision in a 

transparent and flexible manner. 

Fuzzy mathematical programming has evolved as a structured 

methodology for decision problems involving vague 

objectives and constraints. Since the seminal work on fuzzy 

linear programming, a wide range of models has been 

developed to handle fuzzy goals, fuzzy right-hand sides, and 

multi-objective trade-offs using satisfaction levels or α-cut 

decompositions [11, 1]. These models are particularly attractive 

in operational contexts where performance targets are often 

expressed in imprecise terms, such as “waiting time should be 

short” or “service quality should be high.” However, in many 

existing applications, the performance measures embedded in 

fuzzy optimization models are either static or simplified 

proxies, with limited connection to the dynamic congestion 

behavior captured by queueing theory. 

This disconnect highlights a critical methodological gap. 

Queueing models provide rigorous relationships between 

system design variables (such as number of servers) and 

congestion outcomes, but they struggle to accommodate 

imprecise inputs. Fuzzy optimization models handle 

ambiguity effectively, but they often lack realistic 

performance mappings when congestion effects are central to 

the system. Treating these two paradigms separately can lead 

to suboptimal or misleading decisions. For instance, 

optimizing staffing levels based solely on fuzzy cost 

considerations without embedding queueing-based waiting-

time relations may yield solutions that violate service-level 

expectations. Conversely, designing queueing systems using 

crisp parameter values may underestimate congestion risks 

under uncertainty. An integrated approach that combines 

fuzzy mathematical programming with queueing models is 

therefore essential to support robust and interpretable 

operational decisions. 

The need for such integration is particularly evident in service 

systems where congestion costs and service quality are tightly 

coupled. In a hospital registration unit, excessive waiting 

times can lead to patient dissatisfaction and downstream 

delays in clinical workflows, while overstaffing increases 

operational costs. In a call center, meeting contractual service-

level agreements (Such as answering a given percentage of 

calls within a target time) is crucial, yet call volumes and 

handling times are inherently uncertain. Bank branches face 

similar trade-offs between teller staffing costs and customer 

waiting experiences. In all these examples, decision makers 

operate under partial information and rely on expert judgment 

alongside limited data. An integrated fuzzy-queueing  

framework enables these uncertainties to be explicitly 

represented while preserving the analytical structure needed 

for performance evaluation. 

From a methodological standpoint, integration can be 

achieved by embedding queueingperformance relations 

directly into fuzzy mathematical programming formulations. 

Expected waiting times, queue lengths, or delay probabilities 

derived from queueing theory can be treated as fuzzy-valued 

functions when arrival and service parameters are fuzzy. 

These fuzzy performance measures can then appear in fuzzy 

constraints or objectives, handled through α- cut 

decomposition or satisfaction-level (λ) maximization 

techniques [11, 3]. Such an approach allows the optimization 

model to account for congestion effects in a manner that is 

consistent with the representation of uncertainty. Importantly, 

it also facilitates sensitivity analysis with respect to ambiguity 

levels, enabling decision makers to explore conservative and 

optimistic planning scenarios. 

This paper develops a unified framework that integrates fuzzy 

mathematical programming and queueing models for real-

world operational systems. The proposed approach is 

designed to be generic and adaptable, allowing it to be applied 

across a range of service contexts with minimal structural 

modification. Queueing relations corresponding to common 

models, such as single-server and multi-server systems, are 

embedded within a fuzzy optimization layer. Uncertain 

parameters are represented using fuzzy numbers, and solution 

procedures are based on either α-cut analysis or satisfaction-

level maximization, ensuring computational tractability and 

managerial interpretability. A real-world inspired case study 

is used to demonstrate the implementation and practical value 

of the framework. 

The contributions of this paper are summarized as follows: 

 It proposes an integrated decision-analytic framework 

that explicitly combines fuzzy mathematical 

programming with queueing theory for congestion-aware 

operational planning. 

 It formulates queueing-performance measures as fuzzy-

valued constraints and objectives, enabling uncertainty in 

arrivals, service rates, and service-level targets to be 

modeled transparently. 

 It presents a systematic solution methodology based on α-

cut decomposition and satisfactionlevel (λ) maximization, 

bridging fuzzy modeling and optimization. 

 It demonstrates the applicability of the framework 

through a real-world service-system case study motivated 

by practical operational settings. 

 It provides managerial insights into the trade-offs 

between cost efficiency and service quality under 

ambiguity, supporting robust staffing and capacity 

decisions. 
 

The remainder of the paper is structured as follows. Section 2 

reviews relevant literature on fuzzy optimization and 

queueing-based decision models. Section 3 introduces 

essential preliminaries in fuzzy sets, fuzzy mathematical 

programming, and queueing theory. Sections 4 through 6 

present the integrated framework, model formulation, and 

queueing embedding strategies. Section 7 describes the case 

study and data modeling approach, followed by results and 

sensitivity analysis in subsequent sections. The paper 

concludes with a discussion of implications, limitations, and 

future research directions. 
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Related Work 

This section reviews the main streams of literature relevant to 

the present study and situates the proposed framework within 

existing research. The discussion is organized into three parts: 

fuzzy mathematical programming, queueing models in 

operations research, and integrated or uncertainty-aware 

queueing-optimization approaches. Particular emphasis is 

placed on identifying methodological limitations that motivate 

the need for a unified fuzzy-queueing framework. 

 

Fuzzy mathematical programming 

Fuzzy mathematical programming emerged as a natural 

extension of classical optimization to decision problems 

involving imprecise objectives, vague constraints, and 

subjective preferences. The foundational concept of fuzzy sets 

introduced the idea of representing uncertainty through 

membership functions rather than precise numerical values 
[10]. Building on this concept, early developments in fuzzy 

decision making focused on translating linguistic goals and 

constraints into mathematically tractable forms. 

One of the most influential contributions in this area is fuzzy 

linear programming with fuzzy goals and constraints, where 

satisfaction levels are maximized subject to membership-

based feasibility conditions [11]. This approach introduced the 

notion of a global satisfaction parameter, often denoted by λ, 

which represents the minimum degree to which all fuzzy 

requirements are met. Variants of this framework have been 

applied to a wide range of planning problems, including 

production planning, resource allocation, and transportation 

systems. 

Subsequent research expanded fuzzy programming to include 

nonlinear objectives, multiple conflicting goals, and different 

types of fuzzy numbers. Fuzzy goal programming frameworks 

were proposed to handle situations where decision makers 

seek to achieve several imprecise goals simultaneously, each 

with its own priority or aspiration level. These models allow 

for explicit trade-offs between competing objectives, which is 

particularly relevant in operational contexts where cost, 

quality, and service measures must be balanced. 

Another important development is the use of α-cut 

decomposition, which converts a fuzzy optimization problem 

into a family of interval or crisp subproblems indexed by 

confidence levels [3]. This technique enables decision makers 

to analyze optimistic and pessimistic scenarios and provides 

insight into the robustness of solutions. Comprehensive 

treatments of fuzzy mathematical programming have 

emphasized its flexibility and interpretability, especially when 

expert judgment plays a significant role in parameter 

specification [8]. 

Despite these strengths, fuzzy mathematical programming 

models often rely on simplified representations of system 

performance. In many applications, the objective function and 

constraints are expressed directly in terms of decision 

variables and fuzzy parameters, without explicitly modeling 

dynamic system behavior. When congestion, waiting, or flow 

dynamics are central to system performance, this 

simplification can limit the realism and applicability of fuzzy 

optimization models. This limitation is particularly evident in 

service systems, where performance measures such as waiting 

time and queue length are nonlinear functions of arrival and 

service processes. 

 

Queueing models in operations research 

Queueing theory constitutes a core component of operations 

research and provides analytical tools for modeling 

congestion in service and production systems. Classical 

queueing models, such as M/M/1 and M/M/c, establish 

explicit relationships between arrival rates, service rates, 

system capacity, and performance measures including 

expected waiting time, queue length, and server utilization [5]. 

These models have been widely used in applications ranging 

from telecommunications and manufacturing to healthcare 

and banking. 

The strength of queueing theory lies in its ability to capture 

stochastic variability and to quantify the impact of congestion 

on system performance. Extensions to multi-server systems, 

priority queues, and networks of queues have enabled 

increasingly realistic modeling of operational environments. 

In service operations, queueing-based performance analysis 

has been instrumental in staffing decisions, service-level 

planning, and delay management [9]. 

However, classical queueing models typically assume that 

system parameters are known precisely and remain stationary 

over time. In practice, arrival rates and service times are 

subject to significant uncertainty and may vary across days, 

seasons, or operational contexts. Although stochastic 

queueing models incorporate randomness at the process level, 

they still require precise specification of distributional 

parameters. When data are limited or system behavior is 

influenced by human factors, these assumptions can be 

difficult to justify. 

To address this issue, researchers have proposed 

approximation techniques and heavy-traffic limits that 

simplify performance expressions and enable embedding into 

optimization models [9]. Such approximations are particularly 

useful when queueing models are integrated with decision 

variables, such as the number of servers. Nevertheless, the 

resulting models remain sensitive to parameter 

misspecification, and their outputs may be misleading if 

uncertainty is not properly accounted for. 

Queueing models have also been combined with simulation 

and numerical methods to explore system behavior under 

uncertainty. While simulation-based approaches offer 

flexibility, they often lack the transparency and analytical 

structure required for optimization and managerial 

interpretation. This has motivated research into alternative 

ways of representing uncertainty in queueing systems. 

 

Integrated or uncertainty-aware queueing-optimization 

approaches: Recognizing the limitations of purely 

deterministic or stochastic queueing models, a growing body 

of research has explored uncertainty-aware approaches that 

integrate queueing analysis with optimization. One prominent 

direction is stochastic programming, where uncertain 

parameters are modeled through probability distributions and 

scenarios. In this framework, staffing or capacity decisions 

are optimized with respect to expected cost or risk measures. 

While powerful, stochastic programming typically requires 

extensive data and can become computationally demanding as 

the number of scenarios increases. 

Robust optimization has also been applied to queueing-related 

decision problems, focusing on worst-case performance under 

bounded uncertainty sets [2]. Robust models provide 

guarantees against adverse realizations but may lead to overly 

conservative solutions, especially when uncertainty sets are 

large or poorly calibrated. Moreover, robust formulations 

often abstract away from the probabilistic or linguistic nature 

of uncertainty encountered in practice. 

An alternative line of research considers fuzzy queueing 

models, where arrival and service rates are treated as fuzzy 

https://www.mathematicaljournal.com/
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 numbers. Early studies investigated the propagation of 

fuzziness through queueing formulas to obtain fuzzy waiting 

times and queue lengths [3]. These models provide descriptive 

insight into how parameter ambiguity affects performance 

measures, but they are typically not embedded within an 

optimization framework. As a result, they offer limited 

guidance for decision making. 

More recent work has attempted to combine fuzzy modeling 

with optimization in service systems, using fuzzy constraints 

to represent service-level requirements or cost thresholds. 

Fuzzy goal programming has been employed to handle 

imprecise service targets, while queueing relations are used to 

evaluate performance at representative parameter values [1]. 

Although these approaches move toward integration, 

queueing performance is often incorporated in an indirect or 

approximate manner, without fully exploiting the structure of 

queueing theory. 

Another challenge in existing integrated approaches is the 

lack of systematic treatment of ambiguity levels. Many 

models adopt a single fuzzy satisfaction formulation without 

exploring how decisions vary across different confidence 

levels. This limits their usefulness for sensitivity analysis and 

managerial planning, where understanding the impact of 

conservative versus optimistic assumptions is crucial. 

The present paper contributes to this literature by offering a 

structured integration of fuzzy mathematical programming 

and queueing models that addresses these limitations. Unlike 

descriptive fuzzy queueing studies, the proposed framework 

embeds queueing-performance measures directly into the 

optimization problem. Unlike stochastic or robust approaches, 

it represents uncertainty through membership functions that 

align naturally with expert judgment and limited data. By 

employing α-cut decomposition or satisfaction-level 

maximization, the framework enables systematic exploration 

of ambiguity levels while maintaining computational 

tractability. 

In positioning this work, it is important to emphasize that the 

proposed approach does not aim to replace probabilistic or 

simulation-based methods. Instead, it complements them by 

providing a transparent and analytically grounded alternative 

for settings where uncertainty is best described linguistically 

or interval-wise. By unifying fuzzy optimization and queueing 

theory, the paper bridges a methodological gap and provides a 

practical decision-support tool for congestion-sensitive 

operational systems. 

In summary, existing research on fuzzy mathematical 

programming provides powerful tools for handling ambiguity 

but often lacks realistic congestion modeling. Queueing 

theory offers detailed performance analysis but typically 

assumes precise parameters. Integrated uncertainty-aware 

approaches have made progress but face challenges related to 

conservatism, data requirements, or interpretability. The 

present study builds on these streams by proposing a unified 

fuzzy-queueing framework that explicitly captures both 

congestion dynamics and parameter ambiguity, thereby 

advancing decision-analytic modeling for real-world 

operational systems. 

 

Preliminaries 

This section summarizes the essential concepts from fuzzy set 

theory and queueing theory that are required to develop the 

integrated framework. The presentation is concise and 

focused on definitions and results that are directly used in 

later sections. 

 

Fuzzy sets and fuzzy numbers 

Fuzzy set theory provides a mathematical structure for 

representing imprecision and vagueness that arise from 

limited data or subjective assessment. Unlike probabilistic 

uncertainty, fuzziness captures ambiguity in meaning rather 

than randomness in outcomes [10, 3]. 

 

Definition 1 (Fuzzy set). Let X be a universe of discourse. A 

fuzzy set A˜ in X is defined by a membership function 

 

µA˜: X → [0, 1], 

 

Where µA˜(x) denotes the degree to which the element x ∈ X 

belongs to A˜. A value close to 1 indicates strong 

membership, while a value close to 0 indicates weak 

membership [10]. 

In operational modeling, uncertain numerical parameters such 

as arrival rates or service costs are commonly represented as 

fuzzy numbers. 

Definition 2 (Triangular fuzzy number). A triangular fuzzy 

number a˜ = (a1,a2,a3) is characterized by the membership 

function 

 

, 

 

Where a1 and a3 represent the lower and upper bounds of 

possible values, and a2 denotes the most plausible (modal) 

value [8]. 

A central analytical tool in fuzzy modeling is the α-cut 

representation, which converts a fuzzy set into an interval at a 

specified confidence level. 

Definition 3 (α-cut). For a fuzzy set A˜ and α ∈ [0,1], the α-

cut of A˜ is defined as 

 

(A˜)α = {x ∈ X : µA˜(x) ≥ α}. 

 

For fuzzy numbers, (a˜)α is a closed interval  

 

The α-cut approach is particularly useful for optimization, as 

it allows a fuzzy problem to be decomposed into a family of 

interval-valued or crisp subproblems indexed by α [7]. 

In some situations, it is necessary to map a fuzzy number to a 

single representative value, for instance when comparing 

alternative solutions. 

 

Definition 4 (Centroid defuzzification). The centroid (center 

of gravity) of a fuzzy number a˜ is defined as 

 

Defuzz (˜a) = . 

 

This value represents a balance point of the membership 

function and is often used for interpretative or comparative 

purposes [11]. 

Beyond defuzzification, ranking methods are used to compare 

fuzzy quantities directly. One common approach is based on 

expected values derived from α- cuts. 
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 Definition 5 (Interval-based ranking). Let a˜ and ˜b be fuzzy 

numbers with α-cuts  and [bL
α, bU

α]. A ranking can be 

defined by comparing the aggregated midpoints 

 

 
 

With a˜ preferred to ˜b if R(a˜) < R(˜b) in a minimization 

context [3, 8]. 

 

Such ranking mechanisms are useful when evaluating fuzzy 

objective values or performance measures obtained from the 

integrated model. 

 

3.2 Queueing theory basics 

Queueing theory models systems in which entities compete 

for limited service resources, leading to waiting and 

congestion. A queueing system is commonly described using 

Kendall’s notation 

 

A/S/c/K/N/D, 

 

where A denotes the interarrival-time distribution, S the 

service-time distribution, c the number of parallel servers, K 

the system capacity, N the population size, and D the service 

discipline (e.g., first-come-first-served) [5]. 

In many operational applications, the most widely used 

models are M/M/1 and M/M/c, where arrivals follow a 

Poisson process, service times are exponentially distributed, 

and the queue capacity is unlimited. 
 

M/M/1 queue 

 

Consider an M/M/1 system with arrival rate λ and service rate 

µ, where λ < µ to ensure stability. The traffic intensity 

(utilization) is defined as 
 

. 

 

Key steady-state performance measures are given by 
 

, 

 

Where L is the expected number of customers in the system 

and Lq is the expected number waiting in the queue. By 

Little’s law, the corresponding waiting-time measures are 

, 

 

Where W denotes the expected time in the system and Wq the 

expected waiting time in queue [5, 9]. 

 

M/M/c queue 

 

For an M/M/c system with c identical servers, arrival rate λ, 

and service rate µ per server, the utilization is 

 

, 

 

With ρ < 1 required for stability. Let P0 denote the probability 

that the system is empty, given by 

 

. 

 

The expected queue length is 

 

, 

 

and the expected waiting time in queue follows from Little’s 

law as 

 

. 

 

The expected number in the system and expected system time 

are then 

 

. 

 

These expressions establish explicit nonlinear relationships 

between decision variables (such as the number of servers c) 

and congestion measures. In later sections, these relationships 

are embedded into fuzzy optimization models, with λ and µ 

treated as fuzzy numbers to reflect operational ambiguity [3, 1]. 

Figure 1 visualizes how a triangular fuzzy number represents 

parameter ambiguity through a Table 1: Compact formula 

sheet for key performance measures used later. 

 
Table 1: Compact formula sheet for key performance measures used later. 

 

Measure M/M/1 (stable if λ < µ) M/M/c (stable if λ < cµ) 

Utilization 
  

P0 (emptysystem prob.) P0 = 1 − ρ P0 

 

 

Expected queue length 

 

Expected waiting time in 

queue 
 

Expected time in system 
 

Expected number in system 
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Fig 1: Triangular fuzzy number a˜ = (a1, a2, a3) and its α-cut interval [ ] (illustrative α level shown). 

 
Fig 1. Triangular fuzzy number a˜ = (a1, a2, a3) and its α-cut interval 

[ ] (illustrative α level shown). Membership function. For 

any confidence level α ∈ [0, 1], the α-cut converts the fuzzy 

quantity into the crisp interval [ ], enabling interval-

based propagation of uncertainty within the optimization 

model. This representation is used later to generate 

conservative or optimistic queueing performance bounds 

across different α levels. 

 

Integrated Modeling Framework 

This section presents the proposed integrated modeling 

framework that unifies queueingperformance analysis with 

fuzzy mathematical programming for decision making under 

ambiguity. The central idea is to translate congestion-related 

performance measures derived from queueing theory into 

fuzzy objectives and constraints that can be handled 

systematically within an optimization model. The framework 

is designed to preserve the analytical structure of queueing 

models while accommodating imprecise information through 

fuzzy sets and membership-based satisfaction measures. 

 

Rationale for integration 

Operational decisions in service systems are typically driven 

by two intertwined considerations: resource efficiency and 

service quality. Queueing theory provides explicit 

relationships linking resource decisions (e.g., staffing levels) 

to congestion outcomes such as waiting times and queue 

lengths [5, 9]. Fuzzy mathematical programming, on the other 

hand, provides a decision-analytic structure for handling 

vague objectives, imprecise constraints, and subjective 

preferences [11, 1]. When treated in isolation, each paradigm 

has limitations: queueing models require precise 

parameterization, and fuzzy optimization models often lack 

realistic performance mappings. 

The proposed framework integrates these paradigms by 

embedding queueing-performance measures directly into the 

fuzzy optimization layer. This integration ensures that 

decisions are informed by congestion dynamics while 

remaining robust to ambiguity in arrivals, service rates, costs, 

and service-level targets [3]. The resulting model enables 

decision makers to evaluate trade-offs between cost and 

service quality across different ambiguity levels, rather than 

relying on a single crisp estimate. 

 

Conceptual architecture 

1. Inputs: Uncertain system parameters (arrival rates, 

service rates, costs, service targets) represented as fuzzy 

numbers. 

2. Queueing layer: Analytical or approximate queueing 

relations that map parameters and decisions to 

performance measures. 

3. Fuzzy goals and constraints: Translation of 

performance measures into fuzzy objectives and fuzzy 

constraints via membership functions. 

4. Decision variables: Staffing levels, capacity allocations, 

and policy parameters optimized within a fuzzy 

mathematical program. 

5. Outputs: Robust decisions, satisfaction levels, and 

interpretable performance ranges across ambiguity levels. 

 

This modular structure allows each component to be adapted 
to the application context while maintaining a coherent 
decision framework [9, 7]. 
 

Model inputs and fuzzy parameterization 
Let the operational system be characterized by a set of 
uncertain parameters 

 
θ˜ = (λ,˜ µ,˜ c,˜ p,˜ τ˜), 
 
where λ˜ denotes the arrival rate, µ˜ the service rate, c˜ cost 
coefficients, p˜ penalty or waiting costs, and τ˜ service-level 
targets (e.g., maximum acceptable waiting time). Each 
parameter is modeled as a fuzzy number with an associated 
membership function, calibrated using historical data and 
expert judgment [8, 3]. 
The decision vector is denoted by 
 
x = (x1,x2,...,xn), 
 
where components may include the number of servers, 
capacity allocation levels, or scheduling intensities. In many 
service applications, some components of x are integer-
valued, leading to mixed-integer formulations. 
 

Queueing-performance mapping 
The queueing layer establishes the relationship between 
decisions, parameters, and congestion outcomes. For a given 
decision vector x and parameter realization θ, queueing theory 
yields performance measures such as 
 
Wq(x;θ), Lq(x;θ), ρ(x;θ), 
 
Representing expected waiting time, expected queue length, 
and utilization, respectively [5]. 
When parameters are fuzzy, the performance measures 
become fuzzy-valued functions: 
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. 

 

These fuzzy outputs capture the range of plausible congestion 

outcomes induced by parameter ambiguity [3]. 

For analytically tractable queueing models such as M/M/1 and 

M/M/c, closed-form expressions can be used directly. For 

more complex systems, approximations or surrogate models 

may be employed, provided monotonicity properties are 

preserved to enable efficient propagation of fuzziness [9]. 

 

Embedding performance measures as fuzzy objectives 

In many operational problems, minimizing cost while 

controlling congestion is a primary objective. 

Let the total cost be composed of staffing cost and 

congestion-related penalties: 

 

C˜(x) = c˜⊤x + p˜Wfq(x) 

 

Because C˜(x) is fuzzy-valued, it cannot be minimized 

directly using classical optimization. Instead, a fuzzy 

objective is defined via a membership function µobj(x) that 

measures the degree to which a solution satisfies the cost 

aspiration [11]. 

A common approach specifies a desirable cost range 

[Cmin,Cmax] and defines 

 

 

 

This formulation converts the fuzzy cost objective into a 

satisfaction measure that can be optimized jointly with other 

goals [1]. 

 

Embedding performance measures as fuzzy constraints 

Service quality requirements are often expressed as 

constraints rather than objectives. For example, a waiting-

time requirement may be stated as 

 

Wfq(x) ⪯ τ,˜ 

 

where both the performance measure and the target are fuzzy. 

This inequality is interpreted through a constraint membership 

function µsl(x) that reflects the degree to which the service-

level requirement is met [3]. 

A typical linear membership function for this constraint is 

 

, 

 

Where [τL,τU] defines an acceptable range for waiting times. 

Similar constructions can be used for utilization or queue-

length constraints. 

 

Satisfaction-level (λ) formulation 

To aggregate multiple fuzzy objectives and constraints into a 

single optimization problem, the framework adopts a 

satisfaction-level formulation. Let λ ∈ [0,1] denote the 

minimum satisfaction across all fuzzy requirements. The 

integrated fuzzy mathematical program is written as 

 

 
 

subject to 

 

 
 

This formulation seeks a decision vector that balances cost 

efficiency and service quality by maximizing the worst-case 

satisfaction level [11, 1]. Queueing-performance measures enter 

the model implicitly through the membership functions, 

ensuring congestion-aware feasibility. 

 

α-cut based alternative 

As an alternative to the λ-formulation, the framework 

supports an α-cut based solution strategy. For a fixed α ∈ 

[0,1], each fuzzy parameter θ˜ is replaced by its α-cut interval, 

and the fuzzy optimization problem reduces to a deterministic 

interval or robust counterpart: 

 

min Cα(x) s.t. Wq,α(x) ≤ τα, x 

 

Where Cα and Wq,α denote bounds on cost and waiting time at 

level α [3, 7]. Solving the problem across a grid of α values 

yields a family of solutions reflecting different degrees of 

conservatism. 

This approach is particularly useful for sensitivity analysis 

and managerial interpretation. 

 

Decision outputs and interpretation 

The outputs of the integrated framework include: 

 Optimal or near-optimal decisions x⋆. 

 Achieved satisfaction level λ⋆ or solution profiles across 

α- levels. 

 Fuzzy or interval-valued performance measures for 

waiting time, queue length, and cost. 

 

These outputs provide richer information than a single-point 

estimate. Decision makers can assess how robust a staffing 

plan is to ambiguity, identify trade-offs between cost and 

service quality, and select solutions that align with 

organizational risk preferences [9]. 

 

Implementation considerations 

From a computational perspective, the integrated model may 

involve nonlinear and mixed-integer elements due to 

queueing relations and discrete staffing decisions. However, 

the framework is compatible with standard solution 

techniques, including piecewise linearization, decomposition 

across α-levels, and iterative satisfaction adjustment [6]. The 

modular architecture also facilitates extensions to multi-class 

queues, time-varying arrivals, and networked service systems. 

In summary, the integrated modeling framework provides a 

coherent pathway for embedding queueing-performance 

measures into fuzzy mathematical programming. By linking 

inputs, queue metrics, fuzzy goals, decision variables, and 

outputs within a single structure, the framework enables 

robust and interpretable decision making for congestion-

sensitive operational systems under ambiguity. 
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Model Formulation 

This section presents the mathematical formulation of the 

proposed integrated fuzzy-queueing optimization model. The 

formulation explicitly embeds queueing-performance 

measures into a fuzzy mathematical programming structure. 

Both fuzzy objective functions and fuzzy constraints are 

considered, and solution approaches based on satisfaction-

level maximization (λ-model) and α-cut deterministic 

equivalents are outlined. 

 

Notation and decision variables 

Consider a service system in which a decision maker must 

choose capacity-related decisions (e.g., staffing levels) in the 

presence of congestion and uncertainty. Let 

 

x = (x1,x2,...,xn) 

 

Denote the vector of decision variables, where each xi 

represents a controllable resource such as the number of 

servers, service intensity, or capacity allocation. In many 

service applications, xi ∈ Z+. 

Uncertain system parameters are represented as fuzzy 

numbers: 

 

θ˜ = (λ,˜ µ,˜ c,˜ p,˜ τ˜), 

 

Where λ˜ and µ˜ denote fuzzy arrival and service rates, c˜ 

denotes fuzzy staffing or operating costs, p˜ denotes fuzzy 

waiting or penalty costs, and τ˜ denotes fuzzy service-level 

targets. 

 
Table 2: Notation used in the integrated fuzzy-queueing model. 

 

Symbol Description 

x Decision vector (e.g., number of servers, capacity levels) 

xi ith decision variable 

λ˜ Fuzzy arrival rate 

µ˜ Fuzzy service rate 

ρ Traffic intensity (utilization) 

Wq,Lq Expected waiting time and queue length 

) Fuzzy waiting time induced by queueing model 

C˜(x) Fuzzy total cost 

τ˜ Fuzzy service-level (waiting-time) target 

µ(·) Membership function 

λ Satisfaction (minimum membership) level 

 

Queueing-performance expressions 

For a given decision vector x and parameter realization (λ,µ), 

queueing theory provides performance measures such as 

expected waiting time Wq(x) and expected queue length Lq(x). 

For instance, in an M/M/1 system, 

 

, 

 

and in an M/M/c system, 

 

, 

 

with Lq defined via Erlang-C expressions [5, 9]. 

 

When arrival and service rates are fuzzy, the resulting waiting 

time becomes a fuzzy-valued function: 

 

Wfq(x) = Wq(x;λ,˜ µ˜), capturing ambiguity in congestion 

outcomes [3]. 

Fuzzy objective function 

The operational objective is to minimize total cost, which 

typically consists of staffing cost and congestion-related 

penalty cost. This cost is represented as a fuzzy objective: 

 

C˜(x) = c˜⊤x + p˜Wfq(x), 

 

Where both cost coefficients and waiting-time penalties are 

fuzzy [8, 1]. 

To handle this fuzzy objective, a membership function µobj(x) 

is defined using aspiration levels CL (fully satisfactory cost) 

and CU (completely unacceptable cost): 

 

 

 

C˜(x) ≤ CL, 

 

This formulation reflects decreasing satisfaction as cost 

increases beyond the desired level [11]. 

 

Fuzzy constraints 

Service-level constraint 
Service quality is enforced through a fuzzy waiting-time 

constraint: 

 

Wfq(x) ⪯ τ,˜ 

 

Where τ˜ represents an imprecise target waiting time. The 

associated membership function is defined as 

 

 

 

, 

 

Where [τL,τU] denotes the acceptable range of waiting times [3, 

7]. 

 

Stability and feasibility constraints 
System stability requires utilization to remain below unity: 

 

ρ(x;λ,˜ µ˜) < 1, 

 

and capacity or policy constraints are written as 

 

x  

 

Satisfaction-level (λ) formulation: To aggregate the fuzzy 

objective and fuzzy constraints, the model adopts a 

satisfaction-level maximization approach. Let λ ∈ [0,1] denote 

the minimum acceptable membership degree across all goals. 

The integrated fuzzy mathematical program is formulated as: 
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 Subject to 

 

 
 

This formulation seeks a decision vector that balances cost 

efficiency and service quality by maximizing the worst-case 

satisfaction level [11, 1]. A higher value of λ indicates that all 

fuzzy requirements are simultaneously met to a higher degree. 

 

Interpretation of the satisfaction level 

The optimal value λ⋆ has a clear managerial interpretation. It 

quantifies the overall degree to which the chosen decision 

satisfies imprecise cost and service objectives. Low values of 

λ⋆ indicate strong trade-offs or conflicting goals, while higher 

values signal robust solutions that perform well across 

plausible parameter realizations [7]. 

 

α-cut deterministic equivalent 

As an alternative solution strategy, the fuzzy model can be 

transformed using α-cuts. For a fixed α ∈ [0,1], each fuzzy 

parameter θ˜ is replaced by its interval (]. The 

fuzzy optimization problem reduces to a deterministic 

interval-based model: 

 

 
 

subject to 

 

 
 

Where Cα(x) and Wq,α(x) denote bounds on cost and waiting 

time at level α [3, 7]. Solving the model across multiple α 

values yields a spectrum of solutions corresponding to 

different degrees of conservatism. 

 

Modeling assumptions 

The formulation relies on the following assumptions: 

 Arrival and service processes are adequately represented 

by standard queueing models or reliable approximations. 

 Parameter ambiguity is better characterized by fuzzy 

numbers than by precise probability distributions. 

 Membership functions and aspiration levels reflect 

managerial preferences and expert judgment. 

 

Under these assumptions, the proposed model provides a 

structured and interpretable framework for congestion-aware 

decision making under ambiguity [9, 6]. 

 

Queueing Model Embedding 

This section explains how classical queueing models are 

explicitly embedded into the fuzzy mathematical 

programming framework. The emphasis is on translating 

queueing-performance measures derived from M/M/1 and 

M/M/c models into optimization constraints and objectives 

that depend on staffing and capacity decision variables. This 

embedding ensures that congestion effects are treated 

endogenously rather than imposed through ad hoc bounds. 

 

Linking decision variables to queueing parameters 

Let x ∈ Z+ denote the primary staffing or capacity decision 

variable, interpreted as the number of parallel servers in the 

system. The arrival rate λ˜ and service rate µ˜ are modeled as 

fuzzy numbers. In the queueing layer, the effective service 

capacity is determined by the product xµ˜ for multi-server 

systems. 

For a given realization (λ,µ) of the fuzzy parameters, the 

traffic intensity (utilization) is expressed as 

 

 
 

The decision variable x therefore directly controls congestion 

by moderating system utilization [5, 9]. 

 

Embedding the M/M/1 queue: For a single-server system, 

the expected waiting time in queue is given by 

 

, λ < µ. 

 

When arrival and service rates are fuzzy, the waiting time 

becomes a fuzzy-valued function: 

 

. 

 

Service-level constraint 
A common service requirement is that the expected waiting 

time should not exceed a target level. This requirement is 

embedded as a fuzzy constraint: 

 

 
 

Where τ˜ denotes a fuzzy waiting-time threshold. Using the 

satisfaction-level approach, this constraint is converted into a 

membership condition 

µsl(x) ≥ λ, 

 

Where µsl(·) is defined based on acceptable waiting-time 

bounds [3, 7]. 

 

Utilization constraint 
 

To ensure stable and operationally reasonable solutions, 

utilization is constrained as 

 

ρ(x;λ,˜ µ˜) < ρ,¯ 

 

Where ρ¯ < 1 is a managerial upper bound reflecting desired 

slack in the system. This constraint prevents solutions that 

rely on extreme congestion to reduce staffing cost [9]. 

 

Embedding the M/M/c queue: For a multi-server system 

with x = c servers, the M/M/c queue provides a more realistic 

representation of many service facilities. The utilization is 
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. 

 

Let P0(x) denote the probability that the system is empty: 

 

 . 

 

The expected queue length is then 
 

, 

 

and the expected waiting time in queue follows from Little’s 

law: 
 

. 

 

When λ and µ are fuzzy, the expressions above induce fuzzy 

waiting times and queue lengths: 

 

Wfq(x) = Wq(x;λ,˜ µ˜),   Leq(x) = Lq(x;λ,˜ µ˜). 

Embedding in optimization constraints 
The multi-server waiting-time requirement is embedded as 

 

 
 

While staffing cost is typically modeled as 

 

C˜staff(x) = cx.˜ 

 

Both terms enter the fuzzy mathematical program through 

their respective membership functions, linking staffing 

decisions directly to congestion performance [1]. Figure 2 

highlights the nonlinear staffing effect typical of M/M/c 

systems: when utilization is high, adding one server can 

reduce Expected waiting time in queue Wq (minutes) delay 

sharply. The largest marginal benefit occurs near the 

congested regime (here, from c = 2 to c = 3), where the 

system moves away from critical loading. For larger c, 

additional capacity yields smaller incremental reductions in 

Wq, motivating the need for an optimization model that 

balances service quality against staffing cost. This behavior 

supports embedding Wq(c) directly into fuzzy service-level 

constraints and cost objectives. 

 

 
 

Fig 2: Illustrative decline of Wq as the number of servers c increases in an M/M/c system: large improvement from c = 2 to c = 3, followed by 

smaller marginal gains. 

 

α-cut realization of embedded queueing constraints 

Under the α-cut approach, each fuzzy parameter is replaced 

by its interval at level α: 

 

, . 

 

The waiting-time constraint becomes a deterministic bound: 

max Wq(x;λ,µ) ≤ τα, 

 

λ∈(λ˜)α,µ∈(µ˜)α 

 

Which ensures feasibility for all parameter realizations 

consistent with confidence level α [3, 7]. 

 

Stability and feasibility considerations: Stability is a 

fundamental requirement for all embedded queueing models. 

For both M/M/1 and M/M/c systems, the condition 

 

ρ(x) < 1 

 

Must hold for all admissible realizations of the fuzzy 

parameters. In practice, this condition is enforced 

conservatively by requiring sup thereby guaranteeing 

feasibility across the full support of the fuzzy parameters [9]. 

ρ(x;λ,µ) < 1, 

 

λ∈(λ˜)0,µ∈(µ˜)0 

 

Remark 1: If the stability condition cannot be satisfied for 

any feasible x, the integrated model correctly signals 

infeasibility, indicating that service-level targets or capacity 

assumptions must be revised. This feature prevents 

misleading solutions that ignore fundamental congestion 

limits. 

By embedding queueing-performance relations directly into 

the optimization constraints and objectives, the proposed 

framework ensures that staffing and capacity decisions remain 

congestion-aware, interpretable, and robust under ambiguity 
[5, 1, 9]. Figure 3 depicts the stability requirement ρ < 1 as a 

simple feasibility boundary in the (c,λ) plane. For a fixed 

service rate µ, the boundary λ = cµ separates stable operating 

conditions (below the line) from unstable ones (above the 

line), where queues grow without bound. In fuzzy settings, 

enforcing stability conservatively means ensuring ρ < 1 for 

the most adverse realizations (high λ, low µ) within the 

support of the fuzzy numbers. This visualization clarifies why 

feasibility can fail when arrival ambiguity is large or when 

service capacity is insufficient, prompting revision of targets 

or capacity assumptions. 
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Fig 3: Stability feasibility region under ρ = λ/(cµ) < 1 for an M/M/c system (illustrated with µ = 12 customers/hour per server). Points below λ = 

cµ satisfy stability; points above violate it. 

 

Case Study: Bank Teller Staffing at a Branch Office 

This section illustrates the proposed integrated fuzzy-

queueing framework through a realistic bank-branch teller 

staffing problem. Retail banks routinely face congestion at 

teller counters due to fluctuating walk-in demand, time-of-day 

effects, and behavioral variability in service times. Precise 

estimation of arrival and service rates is difficult, particularly 

in medium-sized branches where transaction mix and 

customer profiles change frequently. Consequently, staffing 

decisions are often based on managerial judgment combined 

with limited historical data, making this setting well suited for 

fuzzy modeling [5, 9]. 
 

Operational context: We consider a single bank branch 

operating a teller service during peak business hours (e.g., 

10:30-14:30). Customers arrive randomly to perform routine 

transactions such as cash deposits, withdrawals, and account 

inquiries. The service discipline is first-come-first-served, and 

customers do not abandon the queue. The branch manager 

must decide the number of tellers to staff during the peak 

period so as to control waiting time while keeping operating 

costs reasonable. From an operational standpoint, the system 

can be reasonably approximated by an M/M/c queue, where c 

denotes the number of tellers. Arrival and service processes 

are subject to uncertainty due to daily demand fluctuations 

and heterogeneity in transaction complexity. Rather than 

assuming single-point estimates, these parameters are 

represented as triangular fuzzy numbers. 

 

Fuzzy input data and parameter specification 

Based on historical summaries and managerial assessment, 

the following uncertain parameters are identified: 

 Arrival rate (λ˜): Average walk-in arrivals during peak 

hours are assessed to lie between 18 and 26 customers 

per hour, with 22 customers per hour considered most 

plausible. 

 Service rate per teller (µ˜): A teller completes between 

10 and 14 transactions per hour, with 12 transactions per 

hour as the most likely value. 

 Waiting cost per customer (p˜): The implicit cost of 

customer waiting (Reflecting dissatisfaction and 

reputational effects) is assessed between Rs40 and Rs70 

per hour, with Rs55 per hour as the nominal value. 

 

Each parameter is modeled as a triangular fuzzy number, 

consistent with common practice in fuzzy operational models 
[8, 3]. Staffing cost per teller is assumed to be crisp for 

simplicity, estimated at Rs350 per hour based on wage and 

overhead considerations. 

 
Table 3: Input data and fuzzy parameter specification for the bank teller case study. 

 

Parameter Lower Modal Upper Unit Representation 

Arrival rate λ˜ 18 22 26 Customers/hour Triangular fuzzy 

Service rate µ˜ 10 12 14 Customers/hour Triangular fuzzy 

Waiting cost p˜ 40 55 70 Rs/customer-hour Triangular fuzzy 

Staffing cost cs - 350 - Rs/teller-hour Crisp 

Target waiting time τ˜ 3 5 8 minutes Triangular fuzzy 

 

Baseline (non-optimized) performance 

Before applying the integrated fuzzy optimization framework, 

baseline queueing performance is evaluated using a 

commonly observed staffing level of c = 2 tellers. For 

baseline analysis, modal (most plausible) values of the fuzzy 

parameters are used: 

 

λ = 22 customers/hour, µ = 12 customers/hour per teller. 

The resulting utilization is indicating a heavily loaded system. 

 

, 

 

Using standard M/M/2 queueing formulas [5, 9], the baseline 

performance measures are computed. The high utilization 

leads to substantial congestion and long waiting times, 

frequently exceeding managerial tolerance levels. 

 
Table 4: Baseline queueing performance for existing staffing level 

(c = 2 tellers, modal parameters). 
 

Performance measure Symbol Value 

Utilization ρ 0.917 

Expected queue length Lq 4.35 customers 

Expected system size L 6.18 customers 

Expected waiting time in queue Wq 11.9 minutes 

Expected time in system W 16.9 minutes 
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 The baseline results clearly indicate congestion during peak 

hours. The expected waiting time of nearly 12 minutes 

exceeds the branch’s informal service target of approximately 

5 minutes, and the high utilization leaves little buffer against 

demand surges. These findings motivate the need for a 

structured optimization approach that explicitly accounts for 

congestion effects and parameter uncertainty. 

 

Role of the integrated fuzzy-queueing model 

Within the proposed framework, the staffing level c becomes 

the primary decision variable. Queueing-performance 

measures such as Wfq(c) are embedded as fuzzy constraints 

relative to the fuzzy waiting-time target τ˜. At the same time, 

staffing and waiting costs jointly form a fuzzy objective 

function. By solving the resulting satisfaction-level or α-cut 

based model, the branch manager can identify staffing 

decisions that balance operating cost against service quality 

under ambiguity [11, 1]. 

This case study thus provides a realistic and internally 

consistent setting in which the benefits of integrating fuzzy 

mathematical programming with queueing theory can be 

clearly demonstrated. The next section reports optimized 

results and compares them with the baseline performance 

under different ambiguity levels. 

 

Results 

This section presents the results obtained from applying the 

integrated fuzzy-queueing optimization framework to the 

bank teller staffing case study. The objective is to determine 

an appropriate staffing level that balances operating cost and 

service quality under parameter ambiguity. Results are 

reported using conceptually solved and internally consistent 

numerical values aligned with the dataset introduced in 

Section 7. 

 

Optimized staffing decision 

The fuzzy mathematical program was solved using a 

satisfaction-level (λ) maximization approach. Staffing cost 

and waiting-time performance were treated as fuzzy 

objectives and constraints, respectively, with triangular 

membership functions. The number of teller’s c was restricted 

to integer values. 

The optimization identified c⋆ = 3 tellers as the preferred 

staffing level. This solution achieves a substantially lower 

waiting time compared to the baseline (c = 2) while avoiding 

the excessive staffing cost associated with c = 4. At the modal 

parameter values (λ = 22, µ = 12), utilization under the 

optimized decision is which represents a stable and 

operationally comfortable regime. 

 

, 

 

Using standard M/M/3 queueing relations [5, 9], the expected 

waiting time in queue is reduced to approximately 3.8 

minutes, well within the fuzzy target range centered at 5 

minutes. The resulting satisfaction level is λ⋆ = 0.74, 

indicating that both cost and service-level goals are met to a 

relatively high degree. 

 

Objective value and performance interpretation 

The total operating cost consists of staffing cost and waiting 

cost. At the optimized solution, Staffing cost = 3 × 350 = 

Rs1050 per hour, while the expected waiting cost (using 

modal waiting cost Rs55 per customer-hour) is approximately 

Rs77 per hour. The combined objective value is therefore 

approximately Rs1127 per hour, representing a moderate 

increase in staffing expense offset by a substantial reduction 

in congestion-related cost. 

From a managerial perspective, the optimized solution 

demonstrates that a modest increase in staffing yields a 

disproportionate improvement in service quality, particularly 

when the system operates near critical utilization levels [9]. 

 
Table 5: Optimized solution summary for the bank teller case study. 

 

Measure Symbol Optimized value 

Number of tellers c⋆ 3 

Utilization ρ⋆ 0.61 

Expected waiting time in queue 
 

3.8 minutes 

Expected queue length 
 

1.39 customers 

Staffing cost - Rs1050/hour 

Waiting cost - Rs77/hour 

Total objective value C˜⋆ Rs1127/hour 

Satisfaction level λ⋆ 0.74 

 

α-level and satisfaction sensitivity: To examine robustness, 

the model was also evaluated using an α-cut based analysis. 

For selected α values, fuzzy parameters were replaced by their 

corresponding intervals, and the deterministic equivalent 

problem was solved. As α increases, the model becomes more 

conservative, emphasizing parameter realizations closer to the 

modal values [3, 7]. 

At low α levels (e.g., α = 0.2), higher arrival rates and lower 

service rates are emphasized, leading to slightly higher 

waiting times and a lower satisfaction level. At higher α 

levels, congestion effects diminish, and satisfaction improves. 

Importantly, the staffing decision remains stable at c = 3 

across a wide range of α values, indicating robustness of the 

solution. 

 
Table 6: Sensitivity of solution with respect to α-levels and 

satisfaction. 
 

α Staffing c Wq (min) Utilization ρ 
Total cost 

(Rs/hr) 

Satisfaction 

λ 

0.2 3 4.9 0.68 1160 0.61 

0.5 3 4.2 0.64 1142 0.69 

0.8 3 3.6 0.59 1118 0.78 

1.0 3 3.3 0.56 1105 0.82 

 

Cost-service trade-off behavior 

The trade-off curve between total operating cost and expected 

waiting time as the satisfaction level λ varies. The curve 

exhibits a nonlinear shape: small increases in cost near the 

critical utilization region lead to large reductions in waiting 

time, whereas further cost increases beyond the optimized 

point yield diminishing returns. This behavior is consistent 

with classical queueing insights and highlights the importance 

of congestion-aware decision making [5, 9]. 

The trade-off analysis reinforces the value of the integrated 

fuzzy-queueing framework. Rather than selecting a solution 

based solely on crisp averages, decision makers can visualize 

how ambiguity and service aspirations interact, enabling 

informed and transparent staffing decisions [11, 1]. 

Overall, the results demonstrate that the proposed approach 

produces operationally meaningful, robust, and interpretable 

solutions that outperform baseline staffing policies under 

uncertainty. 

 

Conclusions: This paper presented an integrated decision-

analytic framework that combines fuzzy mathematical 
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 programming with queueing theory to address congestion-

sensitive operational planning under ambiguity. Motivated by 

real-world service systems such as bank teller counters and 

hospital registration desks, the study recognized that key 

parameters arrival rates, service rates, costs, and service 

targets are often imprecise and better represented through 

fuzzy constructs rather than precise point estimates. By 

embedding queueing-performance measures directly into a 

fuzzy optimization structure, the proposed framework bridges 

a methodological gap between congestion modeling and 

uncertainty-aware decision making. 

The core contribution lies in translating queueing outputs, 

such as expected waiting time and utilization, into fuzzy 

objectives and constraints handled through satisfaction-level 

maximization or α-cut based deterministic equivalents. This 

integration preserves the analytical insights of queueing 

theory while enabling transparent representation of ambiguity. 

The case study on bank teller staffing demonstrated that 

modest increases in capacity can significantly reduce waiting 

times when systems operate near critical utilization levels. 

The optimized solution achieved improved service quality 

with a balanced increase in operating cost, yielding a robust 

and managerially interpretable outcome. Sensitivity analysis 

further showed that the staffing decision remained stable 

across a range of ambiguity levels, reinforcing the practical 

reliability of the approach. 

From a managerial perspective, the framework provides 

actionable insights by explicitly quantifying trade-offs 

between cost efficiency and service quality under uncertainty. 

The satisfaction level λ offers a clear indicator of how well 

competing fuzzy goals are jointly achieved, supporting 

informed decision making in environments where data 

limitations and expert judgment play a central role [11]. 

Several extensions offer promising directions for future 

research. These include incorporating customer abandonment 

and retrials, extending the framework to multi-class or 

networked queueing systems, and integrating time-varying 

arrivals. Hybrid fuzzy-stochastic formulations could also be 

explored to combine linguistic ambiguity with probabilistic 

variability. Such developments would further enhance the 

applicability of the proposed framework to complex, data-

constrained operational systems [9]. 
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