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Abstract 

We study the existence of multiple solutions of the quasilinear equation (𝜓(𝑢′(𝑡)))′ =
 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)), 𝑡 ∈ [0, 𝑇] submitted to nonlinear Neumann-Steklov boundary conditions, where 𝜓: ] −
𝑎, 𝑎[→ ℝ, with 0 < 𝑎 <  +∞, is an increasing homeomorphism such that 𝜓(0) = 0. Combining some 

sign conditions and lower and upper solutions method, we obtain existence of two or three solutions. 

 

Keywords: 𝜓 − Laplacian, 𝐿1 −Carathéodory function, nonlinear Neumann-Steklov problem, periodic 

problem, lower and upper-solutions, sign conditions 

 

1. Introduction 

This work is devoted to the study of the existence of solutions of the the quasilinear equation 

 

(𝜓(𝑢′(𝑡)))
′

= 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)), ∀ 𝑡 ∈ [0, 𝑇]          (1) 

 

Submitted the nonlinear Neumann-Steklov boundary conditions 

 

𝜓(𝑢′(0)) = ℎ0(𝑢(0)), 𝜓(𝑢′(𝑇)) = ℎ𝑇(𝑢(𝑇))          (2) 

 

Where 𝜓: ] − 𝑎, 𝑎[→ ℝ with 0 <  𝑎 <  +∞, is an increasing homeomorphism such that 

𝜓(0) = 0, ℎ0, ℎ𝑇: ℝ → ℝ and 𝑓: [0, 𝑇] × ℝ2 → ℝ are continuous functions. 

 

Generally, in the lower and upper solutions method, to show existence of at least one solution 

of a problem, we need existence of at least one lower solution and at least one upper solution. 

In the case of the sign conditions method, we usually need two sign conditions to show 

existence of at least one solution of a problem. 

In 2016, Goli and Adjé [10] proved existence of solutions of (1)-(2), when there exists only one 

sign condition and only one lower solution or only one upper solution. 

 

We use the results proven by Goli and Adjé [10] to show \begin{itemize} 

 Existence of at least two solutions of (1)-(2), when we have only one sign condition, one 

strict lower solution and one strict upper solution. 

 Existence of at least three solutions of (1)-(2), when we have two sign conditions, one 

strict lower solution and one strict upper solution. 

 For some problems with Neumann-Steklov boundary conditions, the existence of two real 

numbers 𝑎 and 𝑏 such that 𝑎 > 𝑏, ℎ0(𝑎) ≤ 0 ≤  ℎ𝑇(𝑎), ℎ𝑇(𝑏) ≤ 0 ≤  ℎ0(𝑏), 𝑓(𝑡, 𝑎, 0) <
0 and 𝑓(𝑡, 𝑏, 0) > 0, ∀𝑡 ∈ [0, 𝑇], allows us to affirm the existence of 2 or 3 solutions. 

 

In section 2, we give some preliminaries results 

In section 3, combining some sign conditions and existence only one strict lower solution and 

one strict upper solution of problem (1)-(2), we prove existence of at least two or three 

solutions of problem (1)-(2). We show in this section that the existence of at least two or three 

solutions for certain forced relativistic pendulum equations with friction and Neumann-Steklov 

boundary conditions is guaranteed by the presence of one strict lower solution and one strict 

upper solution. 

https://www.mathematicaljournal.com/
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2. Preliminary 

Definition 2.1: A solution of problem (1)-(2) is a function 𝑢 ∈ 𝐶1([0, 𝑇]) such that 𝜓(𝑢′) ∈ 𝐶1([0, 𝑇]), ||𝑢′||∞ < 𝑎 and satisfies 

(1)-(2). 

 

Definition 2.2: A function 𝛿 ∈ 𝐶1([0, 𝑇]) is a lower-solution of the problem (1)-(2) if ||𝛿 ′||∞ < 𝑎, 𝜓(𝛿 ′) ∈ 𝐶1([0, 𝑇]),  
 

(𝜓(𝛿′(𝑡)))
′

≥  𝑓(𝑡, 𝛿(𝑡), 𝛿 ′(𝑡)), 𝑡 ∈ [0, 𝑇],                   (3) 

 

𝜓(𝛿′(0)) ≥ ℎ0(𝛿(0)) 𝑎𝑛𝑑 𝜓(𝛿
′(𝑇)) ≤ ℎ𝑇(𝛿(𝑇))                 (4) 

 

Definition 2.3: A function 𝛾 ∈ 𝐶1([0, 𝑇]) is an upper-solution of the problem (1)-(2) if ||𝛾 ′||∞ < 𝑎, 𝜓(𝛾 ′) ∈ 𝐶1([0, 𝑇]),  
 

(𝜓(𝛾′(𝑡)))
′

≤  𝑓(𝑡, 𝛾(𝑡), 𝛾 ′(𝑡)), 𝑡 ∈ [0, 𝑇],                   (5) 

 

𝜓(𝛾′(0)) ≤ ℎ0(𝛾(0)) 𝑎𝑛𝑑 𝜓(𝛾
′(𝑇)) ≥ ℎ𝑇(𝛾(𝑇))                 (6) 

 

Definition 2.4: A lower-solution 𝛿 of (1)-(2) is said to be strict if every solution 𝑢 of (1)-(2) with 𝑢(𝑡)  ≥ 𝛿(𝑡) on [0, 𝑇] is such 

that 𝑢(𝑡)  >  𝛿(𝑡) on [0, 𝑇]. 
 

Definition 2.5: A upper-solution 𝛾 of (1)-(2) is said to be strict if every solution 𝑢 of (1)-(2) with 𝑢(𝑡)  ≤ 𝛾(𝑡) on [0, 𝑇] is such 

that 𝑢(𝑡)  < 𝛾(𝑡) on [0, 𝑇]. 
 

Remark 2.1 

 A lower solution of (1)-(2) is strict if the inequality (3) is strict for all 𝑡 ∈ [0, 𝑇]; 
 An upper solution of (1)-(2) is strict if the inequality (5) is strict for all 𝑡 ∈ [0, 𝑇]. 
 

Theorem 2.1 Assume that 

 There exists 𝛿 a lower-solution of the problem (1)-(2). 

 ∃ 𝑅 > 0 such that 

 

𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0
− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) >  0          (7) 

 

Then the problem (1)-(2) admits at least one solution 𝑢 such that 𝛿(𝑡)  ≤  𝑢(𝑡) for all 𝑡 ∈  [0, 𝑇]. 
 

Proof. See Theorem 4.2 and its proof in [10]. 

 

Theorem 2.2: Assume that 

 There exists 𝛾 an upper-solution of the problem (1)-(2). 

 ∃ 𝑅 > 0 such that 

 

𝑢𝑀 ≤ −𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0
− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) <  0          (8) 

 

Then the problem (1)-(2) admits at least one solution 𝑢 such that 𝑢(𝑡)  ≤ 𝛾(𝑡) for all 𝑡 ∈  [0, 𝑇]. 
 

Proof. See [10]. 

 

Theorem 2.3 Assume that there exist a lower-solution $\delta$ and an upper-solution 𝛾 of (1)-(2) such that 

 

∃𝑡̃ ∈  [0, 𝑇] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿(𝑡̃) > 𝛾(𝑡̃); 
 

Then the problem (1)-(2) admits at least one solution 𝑢, such that 

 

min{𝛿(𝑡𝑢), 𝛾(𝑡𝑢)} ≤  𝑢(𝑡𝑢) ≤ max{𝛿(𝑡𝑢), 𝛾(𝑡𝑢)} 
 

For some 𝑡𝑢 ∈ [0, 𝑇] and 

 

||𝑢||
∞
≤ max {||𝛿||

∞
, ||𝛾||

∞
} + 𝑎𝑇. 

 

Proof. See Theorem 4.1 and its proof in [11]. 
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3. Neumann-Steklov problem  

3.1 Existence of at least two solutions 

 

Theorem 3.1: Assume that 

 There exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that ∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 
 ∃ 𝑅 > 0 such that 

 

𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0
− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) >  0          (9) 

 

Then the problem (1)-(2) admits at least two solutions 𝒖 and 𝒘 such that 

 𝛿(𝑡) <  𝑢(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]. 
 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 
 

Proof. By Theorem 2.1 and the fact that 𝛿 is strict, the problem (1)-(2) admits at least one solution 𝑢 such that 

 

𝛿(𝑡) <  𝑢(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇]                     (10) 

 

Using the Theorem 2.3., the problem (1)-(2) admits at least one solution 𝑤 such that 

 

𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤)             (11) 

 

Using (10) and (11), we have 𝑢 ≠ 𝑤. 

 

Theorem 3.2: Assume that: 

 There exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that ∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 
 ∃ 𝑅 > 0 such that 

 

𝑢𝑀 ≤ −𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) <  0. (12) 

 

Then the problem (1)-(2) admits at least two solutions 𝒖 and 𝒘 such that 

 𝑣(𝑡) <  𝛾(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 
 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 
 

Proof. By Theorem 2.2 and the fact that 𝛾 is strict, the problem (1)-(2) admits at least one solution 𝑣 such that 

 

𝑣(𝑡) <  𝛾(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇]                      (13) 

 

Using the Theorem 2.3., the problem (1)-(2) admits at least one solution 𝒘 such that 

 

𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤)              (14) 

 

Using (13) and (14), we have 𝑣 ≠ 𝑤. 

 

Corollary 3.1 Assume that 

 

lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞ 𝑜𝑟 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈}[0, 𝑇] × [−𝑎, 𝑎]; 

 

 There exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2). 

 ℎ0 and ℎ𝑇 are bounded on ℝ. 

 

Then the problem (1)-(2) has at least two solutions. 

 

Corollary 3.2. Assume that: 

 lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞ 𝑜𝑟 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

 ℎ0 and ℎ𝑇 are bounded on ℝ;  

 There exist 𝛿 ∈ ℝ and 𝛾 ∈ ℝ such that 𝛿 > 𝛾 and 𝑓(𝑡, 𝛿, 0) < 0 and 𝑓(𝑡, 𝛾, 0) > 0, ∀ 𝑡 ∈ [0, 𝑇]. 
 

Then the problem (1)-(2) has at least two solutions. 

 

Example 3.1 Consider the problem 

 

https://www.mathematicaljournal.com/
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(

 
𝑢′(𝑡)

√1 − (𝑢′′(𝑡))
2

)

 

′

 = 𝑡2 + (u(t))2 +−9 + 𝑡4(u′(t) + cos(u(t))), 𝑡 ∈  [0,1],

 

 

 
𝑢′(0)

√1 − (𝑢′(0))
2
= − tanh(𝑢(0))  𝑎𝑛𝑑 

𝑢′(1)

√1 − (𝑢′(1))
2
= tanh(𝑢(1)), 

 

We can take ℎ0(𝑥) = − tanh(𝑥), ℎ𝑇(𝑥) = tanh(𝑥), 𝛿 = 1 and 𝛾 = −10. 

 

We have: ℎ0 and ℎ𝑇 are bounded on ℝ, 

 
lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}, 

 

𝑓(𝑡, 𝛿, 0)  =  𝑓(𝑡, 1,0) = 𝑡2 + (1)2 − 9 + 𝑡4(0 + cos(1)) 
 

 =  𝑡2 − 8 + 𝑡4(0 + cos(1))  < 0, 
 

𝑓(𝑡, 𝛾, 0) =  𝑓(𝑡, −10,0) = 𝑡2 + (−10)2 − 9 + 𝑡4(0 + cos(−10)) 
 

= 𝑡2 + 91 + 𝑡4(0 + cos(−10))  < 0, 

 

ℎ0(1) < 0 < ℎ𝑇(1) 𝑎𝑛𝑑 ℎ0(−10) > 0 > ℎ𝑇(−10). 
 

Using Corollary 3.2., we deduce the existence of at least two solutions. 

 

3.2 Existence of at least three solutions 

Theorem 3.3. Assume that: 

 There exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2) such that 

 

∃ 𝑡 ∈  [0, 𝑇], 𝛿(𝑡) > 𝛾(𝑡); 
 

  ∃ 𝑅 > 0 such that 

  

𝑢𝐿 ≥ 𝑅 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0
− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) >  0 and ∃ 𝑅1 > 0 such that 

 

𝑢𝑀 ≤ −𝑅1 𝑎𝑛𝑑 ||𝑢
′||
∞
< 𝑎 ⇒ ∫ 𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))𝑑𝑡

𝑇

0

− ℎ𝑇(𝑢(𝑇)) + ℎ0(𝑢(0)) <  0.  

 

Then the problem (1)-(2) admits at least two solutions 𝒖, 𝒗 and 𝒘 such that 

 𝛿(𝑡) <  𝑢(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 
 𝑣(𝑡) <  𝛾(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  [0, 𝑇]; 
 𝛾(𝑡𝑤) ≤  𝑢(𝑡𝑤) ≤ 𝛿(𝑡𝑤) for some 𝑡𝑤 ∈ [0, 𝑇]. 
 

Proof. By Theorem 2.1. and the fact that 𝛿 is strict, the problem (1)-(2) admits at least one solution 𝑢 such that 

 

𝛿(𝑡) <  𝑢(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇]                     (15) 

 

By Theorem 2.5. and the fact that 𝛾 is strict, the problem (1)-(2) admits at least one solution 𝑣 such that 

 

𝑣(𝑡) <  𝛾(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑇]                      (16) 

 

Using the Theorem 2.3., the problem (1)-(2) admits at least one solution 𝑤 such that 

𝛾(𝑡𝑤) = min{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} ≤  𝑤(𝑡𝑤) ≤ max{𝛿(𝑡𝑤), 𝛾(𝑡𝑤)} = 𝛿(𝑡𝑤)             (17) 

 

Using (15), (16) and (17), we have 𝑢 ≠ 𝑣, 𝑢 ≠ 𝑤 and 𝑣 ≠ 𝑤. 

 

Corollary 3.3 Assume that: 

 lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞ 𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈}[0, 𝑇] × [−𝑎, 𝑎]; 

  ℎ0 and ℎ𝑇 are bounded on ℝ; 

 There exist a strict lower-solution 𝛿 and a strict upper-solution 𝛾 of (1)-(2). 

 

https://www.mathematicaljournal.com/


 

~17~ 

Journal of Mathematical Problems, Equations and Statistics  https://www.mathematicaljournal.com 
 

Then the problem (1)-(3) has at least three solutions. 

 

Corollary 3.4 Assume that 

 lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞ 𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}; 

 ℎ0 and ℎ𝑇 are bounded on ℝ;  

 There exist 𝛿 ∈ ℝ and 𝛾 ∈ ℝ such that 𝛿 > 𝛾 and 𝑓(𝑡, 𝛿, 0) < 0 and 𝑓(𝑡, 𝛾, 0) > 0, ∀ 𝑡 ∈ [0, 𝑇]. 
  

Then the problem (1)-(2) has at least three solutions. 

 

Example 3.2 

  

(

 
𝑢′(𝑡)

√1 − (𝑢′′(𝑡))
2

)

 

′

 =
𝑡

3
+ (u(t))3 − 12𝑢(𝑡) − 1 + sin 𝑡4 (u′(t) + arctan(u(t))), 𝑡 ∈  [0,1],

 

 

 
𝑢′(0)

√1 − (𝑢′(0))
2
= −arctan (

1

2
𝑢(0))  𝑎𝑛𝑑 

𝑢′(1)

√1 − (𝑢′(1))
2
= arctan (

1

2
𝑢(1)), 

 

We can take 𝛿 = 2 and 𝛾 = −2. 

 

We have, 

 

ℎ0 and ℎ𝑇 are bounded on ℝ, 
 
lim
𝑢→−∞

𝑓(𝑡, 𝑢, 𝑣) = −∞ 𝑎𝑛𝑑 lim
𝑢→+∞

𝑓(𝑡, 𝑢, 𝑣) = +∞ uniformly in {(𝑡, 𝑣); (𝑡, 𝑣) ∈ [0, 𝑇] × [−𝑎, 𝑎]}, 

 

𝑓(𝑡, 𝛿, 0)  =  𝑓(𝑡, 2,0) =
𝑡

3
− 17 + sin 𝑡4 (0 + arctan(2))  < 0, 

 

𝑓(𝑡, 𝛾, 0) =  𝑓(𝑡, −2,0) =
𝑡

3
+ 15 + sin 𝑡4 (0 + arctan(−2)) > 0, 

 

ℎ0(2) = −
𝜋

4
< 0 <

𝜋

4
= ℎ𝑇(2) 𝑎𝑛𝑑 ℎ0(−2) =

𝜋

4
> 0 > −

𝜋

4
= ℎ𝑇(−2). 

 

Using Corollary 3.4., we deduce the existence of at least three solutions

 

4. Conclusion 

In this work, we investigated the existence of multiple solutions for a class of quasilinear differential equations involving the ψ-

Laplacian under nonlinear Neumann-Steklov boundary conditions. By combining sign conditions with the lower and upper 

solutions method, we established sufficient criteria for the existence of at least two or three solutions without requiring multiple 

lower or upper solutions. The results extend and refine earlier studies by showing that even a single strict lower and upper solution 

can guarantee multiplicity. These findings are practically relevant for nonlinear models arising in physics and mechanics, 

including relativistic pendulum-type equations. Future research may focus on uniqueness, stability analysis, and extensions to 

higher-dimensional or time-dependent problems. 
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