



E-ISSN: 2709-9407  
 P-ISSN: 2709-9393  
 Impact Factor (RJIF): 5.94  
 JMPES 2026; 7(1): 13-18  
 © 2026 JMPES  
[www.mathematicaljournal.com](http://www.mathematicaljournal.com)  
 Received: 15-11-2025  
 Accepted: 16-12-2025

**Konan Charles Etienne Goli**  
 Ecole Supérieure Africaine de  
 Technologies de l'Information et  
 de la Communication (ESATIC),  
 18 BP 1501 Abidjan 18,  
 Côte D'ivoire

**David Paul Tuo**  
 Université Félix Houphouet  
 Boigny de Côte D'ivoire,  
 22 BP 582 Abidjan 22,  
 Côte D'ivoire

## Multiple solutions for some Neumann-Steklov boundary value problems with $\psi$ -laplacian

**Konan Charles Etienne Goli and David Paul Tuo**

**DOI:** <https://www.doi.org/10.22271/math.2026.v7.i1a.281>

### Abstract

We study the existence of multiple solutions of the quasilinear equation  $(\psi(u'(t)))' = f(t, u(t), u'(t)), t \in [0, T]$  submitted to nonlinear Neumann-Steklov boundary conditions, where  $\psi: ]-a, a[ \rightarrow \mathbb{R}$ , with  $0 < a < +\infty$ , is an increasing homeomorphism such that  $\psi(0) = 0$ . Combining some sign conditions and lower and upper solutions method, we obtain existence of two or three solutions.

**Keywords:**  $\psi$  – Laplacian,  $L^1$  –Carathéodory function, nonlinear Neumann-Steklov problem, periodic problem, lower and upper-solutions, sign conditions

### 1. Introduction

This work is devoted to the study of the existence of solutions of the the quasilinear equation

$$(\psi(u'(t)))' = f(t, u(t), u'(t)), \forall t \in [0, T] \quad (1)$$

Submitted the nonlinear Neumann-Steklov boundary conditions

$$\psi(u'(0)) = h_0(u(0)), \psi(u'(T)) = h_T(u(T)) \quad (2)$$

Where  $\psi: ]-a, a[ \rightarrow \mathbb{R}$  with  $0 < a < +\infty$ , is an increasing homeomorphism such that  $\psi(0) = 0$ ,  $h_0, h_T: \mathbb{R} \rightarrow \mathbb{R}$  and  $f: [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R}$  are continuous functions.

Generally, in the lower and upper solutions method, to show existence of at least one solution of a problem, we need existence of at least one lower solution and at least one upper solution. In the case of the sign conditions method, we usually need two sign conditions to show existence of at least one solution of a problem.

In 2016, Goli and Adjé [10] proved existence of solutions of (1)-(2), when there exists only one sign condition and only one lower solution or only one upper solution.

### We use the results proven by Goli and Adjé [10] to show \begin{itemize}

- Existence of at least two solutions of (1)-(2), when we have only one sign condition, one strict lower solution and one strict upper solution.
- Existence of at least three solutions of (1)-(2), when we have two sign conditions, one strict lower solution and one strict upper solution.
- For some problems with Neumann-Steklov boundary conditions, the existence of two real numbers  $a$  and  $b$  such that  $a > b$ ,  $h_0(a) \leq 0 \leq h_T(a), h_T(b) \leq 0 \leq h_0(b)$ ,  $f(t, a, 0) < 0$  and  $f(t, b, 0) > 0$ ,  $\forall t \in [0, T]$ , allows us to affirm the existence of 2 or 3 solutions.

In section 2, we give some preliminaries results

In section 3, combining some sign conditions and existence only one strict lower solution and one strict upper solution of problem (1)-(2), we prove existence of at least two or three solutions of problem (1)-(2). We show in this section that the existence of at least two or three solutions for certain forced relativistic pendulum equations with friction and Neumann-Steklov boundary conditions is guaranteed by the presence of one strict lower solution and one strict upper solution.

**Corresponding Author:**  
**Konan Charles Etienne Goli**  
 Ecole Supérieure Africaine de  
 Technologies de l'Information et  
 de la Communication (ESATIC),  
 18 BP 1501 Abidjan 18,  
 Côte D'ivoire

## 2. Preliminary

**Definition 2.1:** A solution of problem (1)-(2) is a function  $u \in C^1([0, T])$  such that  $\psi(u') \in C^1([0, T])$ ,  $\|u'\|_\infty < a$  and satisfies (1)-(2).

**Definition 2.2:** A function  $\delta \in C^1([0, T])$  is a lower-solution of the problem (1)-(2) if  $\|\delta'\|_\infty < a$ ,  $\psi(\delta') \in C^1([0, T])$ ,

$$(\psi(\delta'(t)))' \geq f(t, \delta(t), \delta'(t)), t \in [0, T], \quad (3)$$

$$\psi(\delta'(0)) \geq h_0(\delta(0)) \text{ and } \psi(\delta'(T)) \leq h_T(\delta(T)) \quad (4)$$

**Definition 2.3:** A function  $\gamma \in C^1([0, T])$  is an upper-solution of the problem (1)-(2) if  $\|\gamma'\|_\infty < a$ ,  $\psi(\gamma') \in C^1([0, T])$ ,

$$(\psi(\gamma'(t)))' \leq f(t, \gamma(t), \gamma'(t)), t \in [0, T], \quad (5)$$

$$\psi(\gamma'(0)) \leq h_0(\gamma(0)) \text{ and } \psi(\gamma'(T)) \geq h_T(\gamma(T)) \quad (6)$$

**Definition 2.4:** A lower-solution  $\delta$  of (1)-(2) is said to be strict if every solution  $u$  of (1)-(2) with  $u(t) \geq \delta(t)$  on  $[0, T]$  is such that  $u(t) > \delta(t)$  on  $[0, T]$ .

**Definition 2.5:** A upper-solution  $\gamma$  of (1)-(2) is said to be strict if every solution  $u$  of (1)-(2) with  $u(t) \leq \gamma(t)$  on  $[0, T]$  is such that  $u(t) < \gamma(t)$  on  $[0, T]$ .

### Remark 2.1

- A lower solution of (1)-(2) is strict if the inequality (3) is strict for all  $t \in [0, T]$ ;
- An upper solution of (1)-(2) is strict if the inequality (5) is strict for all  $t \in [0, T]$ .

### Theorem 2.1

Assume that

- There exists  $\delta$  a lower-solution of the problem (1)-(2).
- $\exists R > 0$  such that

$$u_L \geq R \text{ and } \|u'\|_\infty < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) > 0 \quad (7)$$

Then the problem (1)-(2) admits at least one solution  $u$  such that  $\delta(t) \leq u(t)$  for all  $t \in [0, T]$ .

**Proof.** See Theorem 4.2 and its proof in [10].

### Theorem 2.2:

Assume that

- There exists  $\gamma$  an upper-solution of the problem (1)-(2).
- $\exists R > 0$  such that

$$u_M \leq -R \text{ and } \|u'\|_\infty < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) < 0 \quad (8)$$

Then the problem (1)-(2) admits at least one solution  $u$  such that  $u(t) \leq \gamma(t)$  for all  $t \in [0, T]$ .

**Proof.** See [10].

**Theorem 2.3** Assume that there exist a lower-solution  $\delta$  and an upper-solution  $\gamma$  of (1)-(2) such that

$$\exists \tilde{t} \in [0, T] \text{ such that } \delta(\tilde{t}) > \gamma(\tilde{t});$$

Then the problem (1)-(2) admits at least one solution  $u$ , such that

$$\min\{\delta(t_u), \gamma(t_u)\} \leq u(t_u) \leq \max\{\delta(t_u), \gamma(t_u)\}$$

For some  $t_u \in [0, T]$  and

$$\|u\|_\infty \leq \max\{\|\delta\|_\infty, \|\gamma\|_\infty\} + aT.$$

**Proof.** See Theorem 4.1 and its proof in [11].

### 3. Neumann-Steklov problem

#### 3.1 Existence of at least two solutions

**Theorem 3.1:** Assume that

- There exist a strict lower-solution  $\delta$  and a strict upper-solution  $\gamma$  of (1)-(2) such that  $\exists t \in [0, T], \delta(t) > \gamma(t)$ ;
- $\exists R > 0$  such that

$$u_L \geq R \text{ and } \|u'\|_{\infty} < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) > 0 \quad (9)$$

**Then the problem (1)-(2) admits at least two solutions  $u$  and  $w$  such that**

- $\delta(t) < u(t)$  for all  $t \in [0, T]$ .
- $\gamma(t_w) \leq u(t_w) \leq \delta(t_w)$  for some  $t_w \in [0, T]$ .

**Proof.** By Theorem 2.1 and the fact that  $\delta$  is strict, the problem (1)-(2) admits at least one solution  $u$  such that

$$\delta(t) < u(t) \text{ for all } t \in [0, T] \quad (10)$$

Using the Theorem 2.3., the problem (1)-(2) admits at least one solution  $w$  such that

$$\gamma(t_w) = \min\{\delta(t_w), \gamma(t_w)\} \leq w(t_w) \leq \max\{\delta(t_w), \gamma(t_w)\} = \delta(t_w) \quad (11)$$

Using (10) and (11), we have  $u \neq w$ .

**Theorem 3.2:** Assume that:

- There exist a strict lower-solution  $\delta$  and a strict upper-solution  $\gamma$  of (1)-(2) such that  $\exists t \in [0, T], \delta(t) > \gamma(t)$ ;
- $\exists R > 0$  such that

$$u_M \leq -R \text{ and } \|u'\|_{\infty} < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) < 0. \quad (12)$$

**Then the problem (1)-(2) admits at least two solutions  $u$  and  $w$  such that**

- $v(t) < \gamma(t)$  for all  $t \in [0, T]$ ;
- $\gamma(t_w) \leq u(t_w) \leq \delta(t_w)$  for some  $t_w \in [0, T]$ .

**Proof.** By Theorem 2.2 and the fact that  $\gamma$  is strict, the problem (1)-(2) admits at least one solution  $v$  such that

$$v(t) < \gamma(t) \text{ for all } t \in [0, T] \quad (13)$$

**Using the Theorem 2.3., the problem (1)-(2) admits at least one solution  $w$  such that**

$$\gamma(t_w) = \min\{\delta(t_w), \gamma(t_w)\} \leq w(t_w) \leq \max\{\delta(t_w), \gamma(t_w)\} = \delta(t_w) \quad (14)$$

Using (13) and (14), we have  $v \neq w$ .

**Corollary 3.1** Assume that

$$\lim_{u \rightarrow -\infty} f(t, u, v) = -\infty \text{ or } \lim_{u \rightarrow +\infty} f(t, u, v) = +\infty \text{ uniformly in } \{(t, v); (t, v) \in [0, T] \times [-a, a]\};$$

- There exist a strict lower-solution  $\delta$  and a strict upper-solution  $\gamma$  of (1)-(2).
- $h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ .

Then the problem (1)-(2) has at least two solutions.

**Corollary 3.2.** Assume that:

- $\lim_{u \rightarrow -\infty} f(t, u, v) = -\infty$  or  $\lim_{u \rightarrow +\infty} f(t, u, v) = +\infty$  uniformly in  $\{(t, v); (t, v) \in [0, T] \times [-a, a]\}$ ;
- $h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ ;
- There exist  $\delta \in \mathbb{R}$  and  $\gamma \in \mathbb{R}$  such that  $\delta > \gamma$  and  $f(t, \delta, 0) < 0$  and  $f(t, \gamma, 0) > 0, \forall t \in [0, T]$ .

Then the problem (1)-(2) has at least two solutions.

**Example 3.1** Consider the problem

$$\left( \frac{u'(t)}{\sqrt{1 - (u''(t))^2}} \right)' = t^2 + (u(t))^2 + -9 + t^4(u'(t) + \cos(u(t))), t \in [0,1],$$

$$\frac{u'(0)}{\sqrt{1 - (u'(0))^2}} = -\tanh(u(0)) \text{ and } \frac{u'(1)}{\sqrt{1 - (u'(1))^2}} = \tanh(u(1)),$$

We can take  $h_0(x) = -\tanh(x)$ ,  $h_T(x) = \tanh(x)$ ,  $\delta = 1$  and  $\gamma = -10$ .

We have:  $h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ ,

$$\lim_{u \rightarrow +\infty} f(t, u, v) = +\infty \text{ uniformly in } \{(t, v); (t, v) \in [0, T] \times [-a, a]\},$$

$$f(t, \delta, 0) = f(t, 1, 0) = t^2 + (1)^2 - 9 + t^4(0 + \cos(1))$$

$$= t^2 - 8 + t^4(0 + \cos(1)) < 0,$$

$$f(t, \gamma, 0) = f(t, -10, 0) = t^2 + (-10)^2 - 9 + t^4(0 + \cos(-10))$$

$$= t^2 + 91 + t^4(0 + \cos(-10)) < 0,$$

$$h_0(1) < 0 < h_T(1) \text{ and } h_0(-10) > 0 > h_T(-10).$$

Using Corollary 3.2., we deduce the existence of at least two solutions.

### 3.2 Existence of at least three solutions

**Theorem 3.3.** Assume that:

- There exist a strict lower-solution  $\delta$  and a strict upper-solution  $\gamma$  of (1)-(2) such that

$$\exists t \in [0, T], \delta(t) > \gamma(t);$$

- $\exists R > 0$  such that

$$u_L \geq R \text{ and } \|u'\|_\infty < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) > 0 \text{ and } \exists R_1 > 0 \text{ such that}$$

$$u_M \leq -R_1 \text{ and } \|u'\|_\infty < a \Rightarrow \int_0^T f(t, u(t), u'(t)) dt - h_T(u(T)) + h_0(u(0)) < 0.$$

**Then the problem (1)-(2) admits at least two solutions  $u, v$  and  $w$  such that**

- $\delta(t) < u(t)$  for all  $t \in [0, T]$ ;
- $v(t) < \gamma(t)$  for all  $t \in [0, T]$ ;
- $\gamma(t_w) \leq u(t_w) \leq \delta(t_w)$  for some  $t_w \in [0, T]$ .

**Proof.** By Theorem 2.1. and the fact that  $\delta$  is strict, the problem (1)-(2) admits at least one solution  $u$  such that

$$\delta(t) < u(t) \text{ for all } t \in [0, T] \tag{15}$$

By Theorem 2.5. and the fact that  $\gamma$  is strict, the problem (1)-(2) admits at least one solution  $v$  such that

$$v(t) < \gamma(t) \text{ for all } t \in [0, T] \tag{16}$$

Using the Theorem 2.3., the problem (1)-(2) admits at least one solution  $w$  such that

$$\gamma(t_w) = \min\{\delta(t_w), \gamma(t_w)\} \leq w(t_w) \leq \max\{\delta(t_w), \gamma(t_w)\} = \delta(t_w) \tag{17}$$

Using (15), (16) and (17), we have  $u \neq v$ ,  $u \neq w$  and  $v \neq w$ .

**Corollary 3.3** Assume that:

- $\lim_{u \rightarrow -\infty} f(t, u, v) = -\infty$  and  $\lim_{u \rightarrow +\infty} f(t, u, v) = +\infty$  uniformly in  $\{(t, v); (t, v) \in [0, T] \times [-a, a]\}$ ;
- $h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ ;
- There exist a strict lower-solution  $\delta$  and a strict upper-solution  $\gamma$  of (1)-(2).

Then the problem (1)-(3) has at least three solutions.

**Corollary 3.4** Assume that

- $\lim_{u \rightarrow -\infty} f(t, u, v) = -\infty$  and  $\lim_{u \rightarrow +\infty} f(t, u, v) = +\infty$  uniformly in  $\{(t, v); (t, v) \in [0, T] \times [-a, a]\}$ ;
- $h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ ;
- There exist  $\delta \in \mathbb{R}$  and  $\gamma \in \mathbb{R}$  such that  $\delta > \gamma$  and  $f(t, \delta, 0) < 0$  and  $f(t, \gamma, 0) > 0$ ,  $\forall t \in [0, T]$ .

Then the problem (1)-(2) has at least three solutions.

**Example 3.2**

$$\left( \frac{u'(t)}{\sqrt{1 - (u''(t))^2}} \right)' = \frac{t}{3} + (u(t))^3 - 12u(t) - 1 + \sin t^4 (u'(t) + \arctan(u(t))), t \in [0, 1],$$

$$\frac{u'(0)}{\sqrt{1 - (u'(0))^2}} = -\arctan\left(\frac{1}{2}u(0)\right) \text{ and } \frac{u'(1)}{\sqrt{1 - (u'(1))^2}} = \arctan\left(\frac{1}{2}u(1)\right).$$

We can take  $\delta = 2$  and  $\gamma = -2$ .

We have,

$h_0$  and  $h_T$  are bounded on  $\mathbb{R}$ ,

$$\lim_{u \rightarrow -\infty} f(t, u, v) = -\infty \text{ and } \lim_{u \rightarrow +\infty} f(t, u, v) = +\infty \text{ uniformly in } \{(t, v); (t, v) \in [0, T] \times [-a, a]\},$$

$$f(t, \delta, 0) = f(t, 2, 0) = \frac{t}{3} - 17 + \sin t^4 (0 + \arctan(2)) < 0,$$

$$f(t, \gamma, 0) = f(t, -2, 0) = \frac{t}{3} + 15 + \sin t^4 (0 + \arctan(-2)) > 0,$$

$$h_0(2) = -\frac{\pi}{4} < 0 < \frac{\pi}{4} = h_T(2) \text{ and } h_0(-2) = \frac{\pi}{4} > 0 > -\frac{\pi}{4} = h_T(-2).$$

Using Corollary 3.4., we deduce the existence of at least three solutions

#### 4. Conclusion

In this work, we investigated the existence of multiple solutions for a class of quasilinear differential equations involving the  $\psi$ -Laplacian under nonlinear Neumann-Steklov boundary conditions. By combining sign conditions with the lower and upper solutions method, we established sufficient criteria for the existence of at least two or three solutions without requiring multiple lower or upper solutions. The results extend and refine earlier studies by showing that even a single strict lower and upper solution can guarantee multiplicity. These findings are practically relevant for nonlinear models arising in physics and mechanics, including relativistic pendulum-type equations. Future research may focus on uniqueness, stability analysis, and extensions to higher-dimensional or time-dependent problems.

#### References

1. Cristian B, Jean M. Nonlinear Neumann boundary-value problems with  $\phi$ -Laplacian operators. *An Stiint Univ Ovidius Constanta*. 2004;12:73-92.
2. Cristian B, Jean M. Boundary-value problems with non-surjective  $\phi$ -Laplacian and one-side bounded nonlinearity. *Adv Differ Equ*. 2006;11:35-60.
3. Cristian B, Jean M. Existence and multiplicity results for some nonlinear problems with singular  $\phi$ -Laplacian. *J Differ Equ*. 2007;243(2):536-57.
4. Cristian B, Jean M. Existence and multiplicity results for some nonlinear problems with singular  $\phi$ -Laplacian. *J Differ Equ*. 2007;243(2):536-57.
5. Cristian B, Jean M. Periodic solutions of nonlinear perturbations of  $\phi$ -Laplacians with possibly bounded  $\phi$ . *Nonlinear Anal Theory Methods Appl*. 2008;68:1668-1681.
6. Cristian B, Jean M. Nonhomogeneous boundary value problems for some nonlinear equations with singular  $\phi$ -Laplacian. *J Math Anal Appl*. 2009;352:218-233.
7. Cristian B, Dana G, Manuel Z. Periodic solutions for singular perturbations of the singular  $\phi$ -Laplacian operator. *Commun Contemp Math*. 2013;15(4):1250063.
8. Coster DC, Habets P. Two-point boundary value problems: Lower and upper solutions. Amsterdam: Elsevier; 2006.
9. Villari G. Soluzioni periodiche di una classe di equazione differenziali del terz'ordine. *Ann Mat Pura Appl*. 1966;73:103-110.

10. Gbolamotou CE, Adou A. New existence results for some periodic and Neumann-Steklov boundary value problems with  $\phi$ -Laplacian. *Bound Value Probl.* 2016;2016:170. DOI: 10.1186/s13661-016-0676-6.
11. Gbolamotou CE, Adou A. Existence of solutions of some nonlinear  $\phi$ -Laplacian equations with Neumann-Steklov nonlinear boundary conditions. *Afr Diaspora J Math.* 2017;20(2):16-38.
12. Amster P, Cardenas Alzate PP. Existence of solutions for some nonlinear beam equations. *Port Math.* 2006;63(1):1-10.