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Abstract

We study matrix domains of paranormed sequence spaces obtained by applying lower triangular
(triangle) matrices to Maddox-type variable-exponent spaces. A flexible family of such triangles is
produced by N orlund matrices generated from admissible weight sequences, including Fibonacci, Pell,
Motzkin, and Catalan numbers. For a base paranormed FK-space X € @ and a triangle A, the associated
matrix domain Xa = {x€w: AxeX} is equipped with the transported paranorm ga(x) = gx(Ax). We prove
that completeness and the FK-structure pass from X to Xa, that Xa is (isometrically) isomorphic to X via
the map x— Ax, and that Schauder bases are preserved under passage to matrix domains. Finally, we
describe the K'othe-Toeplitz a-, f-, and y-duals of Xa in terms of the corresponding duals of X and the
inverse triangle A%, and we specialize the general results to N orlund matrices arising from classical
integer sequences.

Keywords: Paranormed sequence spaces, variable exponents; matrix domains, triangles, Norlund
matrices; Schauder bases, Kothe-Toeplitz duals

1. Introduction

Matrix transformations and matrix domains are a standard and powerful tool in sequence space

theory and summability. Given a sequence space X € w and an infinite matrix A = (an), one

may encode additional analytic structure by passing from X to the matrix domain

Xa:={x€w:Ax € X}.

When A is a triangle (lower triangular with nonzero diagonal entries), the map x — Ax is

invertible on » and often transports structural features of X (completeness, bases, dual

descriptions) to the new space Xa.

In this paper we focus on paranormed sequence spaces of Maddox type (with variable

exponents) and on triangles generated by admissible weight sequences through a Norlund

construction. Maddox introduced and developed several variable-exponent sequence spaces

and their basic properties [ 2. Since then, many authors studied matrix domains and related

duality/basis questions for paranormed (and non-absolute type) sequence spaces; see for

instance 7 and references therein.

Our goals are:

e to present a unified construction of Norlund-type triangles from admissible sequences
(including Fibonacci, Pell, Motzkin, Catalan weights);

e to develop topological and linear-structural results for matrix domains Xa of paranormed
FK-spaces X under triangles A,

e to prove preservation of Schauder bases under triangular matrix domains;

e to give systematic descriptions of Kothe-Toeplitz duals of X4 via the inverse matrix AL,

1.1 Preliminaries and notation
Throughout, @ = w denotes the space of all complex sequences X = (Xk)k=0, and all linear spaces
are over C.

1.2 Triangles and matrix transformations
An infinite matrix A = (an)n k=0 acts (formally) on x € w by
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W, = yo_, ankxk,n > 0,

whenever each row sum is meaningful. A matrix is called a triangle if a,= 0 for k > n and a,, #0 for all n > 0. For triangles, each
row sum is finite, so Ax is defined for all x € w.

2. Paranormed FK-spaces
We use the following standard terminology.

Definition 2.1: (Paranorm, FK-space). Let X be a linear space. A map ¢: X — [0,0) is a paranorm if;
q(x) =0 &=>x=0,
q(—x) = q(x) for all x € X,

q(x +y) <q(x) + q(y) for all xy € X,
if an— 0 in C, then g(anX) — 0 for each fixed X € X.

A paranormed space (X,q) is an FK-space (a Fr'echet coordinate space) if it is complete with respect to the metric d(x,y) = q(x-y)
and each coordinate functional px(x) = xx is continuous on X (when X € w).
Kéthe-Toeplitz a-, g-, y- duals

Definition 2.2: (Kothe-Toeplitz duals). Let X S @ be a sequence space and define (x,y): = ZEO:D LkYk whenever the series
converges.

(i) The a-dual is

X . {y Ew: Y |rryl-

oo
«:U

k
<oo for all X € X.

(ii) The g-dual is

oo}
X = {yEw:Zxkyk
k=0

converges forall x € X .

(iii) The y-dual is

"
X7 = {1 Ew: ( Th1 )
vew: (Vo)

k=0

is bounded for all x € X .
Remark 2.3. Always X* < Xf c X,

3. Admissible sequences and Norlund matrices
Admissible sequences
Definition 3.1: (Admissible sequence). Let u = (un)n>o be a sequence of positive real numbers and define

Un: = Z‘;(l:ouk nEO
We call u admissible if u,> 0 for all n and U, —o0 as n —co.

Example 3.2: (Fibonacci, Pell, Motzkin, Catalan). Each of the following yields an admissible sequence u:
e Fibonacci weights: u,=Fn+1where Fo=0, F1=1, Fr+2=Fns1+ Fo.
o  Pell weights: uy=Pn+1where Po=0, P1=1, Ph+2=2Pn+1+ Ph.

n—1

e Motzkin weights: u,= M, where Mo=1, My =1 and My =M, + 35—, MMy —1—kfor n >1.
Up = Cn = 1 2n)l

n+1l n

e Catalan weights:

Norlund matrices

w) _ ()
Definition 3.3: (N&rlund matrix). Let u be admissible and U = P = o ux. The Norlund matrix AW = (@ Ink>0 generated by u
is defined by
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Up—k
(u) — U, ’
G
0, k> n.

0<k<n,

For x € o we have

n
() 1
n - E ank T = E Up—kTk
n k=0 )

a weighted mean of xo,...,Xn

Proposition 3.4: Let u be admissible and AW be as in Definition 3.3. Then:

u
(i) A¥ is a triangle with strictly positive diagonal entries a-gm) = u0/Un > 0. Hence it is invertible on w and its inverse B =
(AW is again a triangle. (ii) Each row sums to 1: for all n >0,

n

X (u)
ank=1.
k=0

(u) u
Proof. (i) By definition®nk = 0 for k > n, andagﬁg = uo/Un >0, A triangle with nonzero diagonal is invertible on w, with
inverse obtained recursively from AWBW = |, (ii) For fixed n,

( ) l n 1 mn
k=0 Jj=0 .

k=0

Proposition 3.5: Let u be admissible. Then:
(i) AW defines a bounded operator on (£, ll.) with operator norm 1.
(ii) A®maps c into ¢ and ¢ into co.

Proof. (i) Let x € £wand M = [IX|l.. Then
‘A(“ n|<—zun klwk|<_zﬂn k=M,
T?k —0 Un =0

0 IAYX]I<IIX]l.. Also AW1 =1, so the norm is exactly 1.

(ii) If x € c with limx, = L, then

(A(u - U Zun k Tk - )

k=0

Fix ¢ > 0 and choose N with |xc—L| < ¢ for k > N. Split the sum into k < N and k > N. The tail part is bounded by ¢, while the finite
part is bounded by C/U, for some constant C, hence goes to 0 since U, —oo. Thus (A®x), — L. The case x € ¢y is the special case L
=0.

4. Maddox-type paranormed spaces and matrix domains
4.1: Maddox-type variable exponent spaces
Let p = (p)k=0 be a sequence of positive reals with

0< Hy:= mfm <suppr =: Hy < 00
k>0

and fix M > max {1,H.}.
Definition 4.2: (Maddox-type spaces). Define:

(i) co(p) :=={z € w: |zk|P* — 0}, Qoo (p)(T) = zlilg |z [PR/ M

(i e(p) ={rew:HeC, |zl =0}, g (z) = }nf sup |y, — £|PE/M.
Crk>0
~g
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M < ()0}1 qu(p) (;T) 1= sup |:Ek|pk/ﬂ.f.

(i) £ oo (p) := {1‘ € w:sup ‘I;,;lp’“/
k>0 k>0

M) t(p) := {”’“ Ew: ) lal™ < OO}’ o) (@) = (Z I:L',a;|p“‘) o
k=0

k=0

Remark 4.2. If px= p is constant, these spaces reduce (up to equivalent paranorms) to classical spaces: co(p) = Co, ¢(p) = C, £(p) =
Loy €(P) = €p.
It is known that these are complete paranormed FK-spaces with continuous coordinate functionals; see 23571,

Matrix domains

Definition 4.3: (Matrix domain). Let (X,gx) S @ be a paranormed FK-space and let A be a triangle. Define

Xa:={x€w: AXe X}, qa(X):=gx(Ax).

Remark 4.4. Even if X is of absolute type, Xa is typically of non-absolute type when A has nontrivial off-diagonal entries, since
membership depends on linear combinations in Ax and may involve cancellations.

Definition 4.4: For 2 €{co,C,l.,{} and X = A(p), set
MAP) 1= Xa={X € @ : AXE A(P)}, Quap(X) : = Qi(p)(AX).
If A =AW is a Nérlund matrix, we also write AW(p) : = A(AY,p).

5. Topological structure of triangular matrix domains

Theorem 5.1: (FK-structure and completeness). Let (X,0x) € w be a complete paranormed FK-space and let A be a triangle.
Then (Xa,ga) is a complete paranormed FK-space.

Proof. Linearity of Xaand the paranorm properties of qa(x) = gx(Ax) follow from linearity of A and the paranorm axioms of gx.

Let (x™™) be Cauchy in (Xa,qa). Then (Ax(™) is Cauchy in X since

gX(Ax(m) — Ax(r)) = gA(x(m) — x(r)) — 0.

By completeness of X, there exists y € X with Ax™ — y in X.

Since A is a triangle, the equation Az =y has a unique solution z € w obtained by back substitution, and z € Xabecause Az =y € X.
Finally,

ga(x™ — 2) = qx(AX™ — Az) = qx(AX™ —y) — 0,

s0 XM — 7 in Xa. Hence Xa is complete.

To see continuity of coordinate functionals on Xa, note that A! is a triangle B = (bw), and for x € Xa we have x = BAx. Thus for
each k,

k
sk = Z bkj(Ax)j,
I1=0

a finite linear combination of continuous coordinate functionals on X composed with the continuous map x — Ax. Hence each x
— X is continuous on Xa. Therefore Xais an FK-space.

Proposition 5.2: (Isometric isomorphism). Let (X,gx) and A be as in Theorem 5.1. Then
Ta: (Xa,0a) = (X,0x), Ta(X) = AX,

is a linear bijective isometry. In particular, Xaand X are linearly homeomorphic.

Proof. By definition, Ta is linear and well-defined, and gx(TaX) = gx(Ax) = ga(x), so it is an isometry into X. Since A is invertible
on o with inverse triangle B = A™!, for each y € X we have x : = By € @ and Ax =y, hence x € Xaand Ta(x) = y. Thus Ta is
surjective. Injectivity follows from invertibility of A. Therefore Tx is a bijective isometry.

Corollary 5.3: Let A €{Co,C,t,(}, let p satisfy 0 < Hy < py< H, < o, and let A be any triangle (in particular a N orlund matrix
AW), Then A(A,p) is linearly isomorphic (indeed, isometric via x —7 4x) to A(p).
Proof. Apply Proposition 5.2 with X = A(p).

Lemma 5.4: (Inclusion via relative boundedness). Let (X,qx) be a complete paranormed space and let A,B be triangles. Assume
that C : = BA ! defines a bounded linear operator on X (i.e. there is K > 0 such that qx(Cz) < Kgx(z) for all z € X). Then Xa € Xz
and

ge(X) <K ga(x) (X € Xa).

Proof. If X € Xa, set z: = Ax € X. Then Bx = BA 'z = Cz € X, s0 X € Xg. Moreover,

ds(X) = dx(Bx) = ax(C2z) < Kax(z) = Kax(Ax) = Kga(x).

6. Schauder bases in matrix domains
Theorem 6.1: (Basis transfer). Let (X,qx) € o be a paranormed FK-space that admits a Schauder basis (U™)ns with continuous
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coordinate functionals. Let A be a triangle and X, its matrix domain. Then the sequence

e(;) = ALy, n >0

is a Schauder basis for Xa, and its coordinate functionals are continuous.
Proof. Let Ta: Xa— X be the isometric isomorphism Ta(x) = Ax. For any x € Xa, puty : = Ax € X. Since (u™) is a Schauder basis
of X, there are unique scalars (an) such that

o0
y= onul

n=0 in X.

Applying A™! gives

e o] o o]

x=Aly= z apn A u™ = Z faTs rz‘(;)

n=0 n=0

N kL N 3 .
1SN = 2n=o Q"negi), then ASy = Y—g anu™ — y in X hence

N
qa(r — Sy) = qx(Ax — ASN) = qx (y -3 anu(”‘)) =0
n=>0 .

Uniqueness of coefficients follows by applying A and using uniqueness in X.
For coordinate functionals, if ¢, are the continuous coefficient maps on X associated with
(u™), define wn(X) : = Pa(AX). Then y, is continuous on Xa and returns the coefficient of ela” in the expansion of x.

Corollary 6.2: (Column basis for Maddox-type spaces). Let X e{co(p),c(p),£-(p)}, and let A be a triangle with inverse B = (by).
Then the columns of B form a Schauder basis of Xa:

eb (n) : = (b kn)k=0, n>0.

Proof. For X € {co(p),c(p).£-(p)} the canonical unit vectors (e™) form a Schauder basis. Apply Theorem 6.1 with u™ = e and
note that A~'e™ is exactly the nth column of B.

7. Kothe-Toeplitz duals of matrix domains
Let A be a triangle and B = A" = (by).
Fory € w, define the sequence yB € w by

oo

(yB)n = Zykbkn = Z ykbkn' n 2 0

k=0 k=n

(@
where the sum is finite for each fixed n since bx,= 0 when k < n.

Lemma 7.1: (Pairing transfer). Let X C w be any sequence space, let A be a triangle, and let X4 be the matrix domain. Then for
every X € Xaandy € o,

(xy) = (AX,yB),

whenever either side is absolutely convergent (hence the rearrangements below are valid). Proof. Let x € Xaand setz : = Ax € X.
Since x = Bz and B is lower triangular,

k xk = Xbknzn.

n=0

Hence
oS} o k 00 00 oo

P SR o ST o (Z ykbkn) S e UB)n — (2. yB) — (A, yB)
k=0 k=0n=0 n=0 \k=n n=0

where we used the definition of yB in (1).

Theorem 7.2: (Duals via the inverse matrix). Let X € w be a sequence space and let A be a triangle with inverse B = A™'. Then:

~10~
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Xa)*={y € w : yB € X4},
Xaf={y€Ew:yB € X}, (Xa)={y € w : yB € X'}.

Proof. We show the a-case; the others are analogous.
Assume y € (Xa)* Let z € X be arbitrary and write x : = Bz € Xa (since Ax = z). Then by Lemma 7.1,

oo o0 o0

> za@B)al = D [(A2)n(yB)al =Y lakyr| < 00
n=>0 n=>0 k=0 ,
soyB € X«

Conversely, suppose yB € X*and take any x € Xawith z : = Ax € X. Again by Lemma 7.1,

(e 0] o0

X X

Xy = [za(yB)n| < o0,
k=0 n=0

S0y € (Xa)* This proves the first identity. The S-case replaces absolute convergence by convergence; the y-case uses boundedness
of partial sums and the same transfer identity.

8. Specialized matrix domains from Fibonacci, Pell, Motzkin, Catalan weights
Fix 2 €{co,c,l,£} and an exponent sequence p as in Definition 4.1. For an admissible weight sequence u, define AW(p) : = A(AY,p)
={x€ew:AYX e i(p)}.

Then all general results above apply with A = AW,

Example 8.1: (Fibonacci-generated domains). Let u, = Fn 1 (Example 3.2(a)) and A®): = AW, Then

n
1
(A(F)I)n, —ntl ~ ank+1‘rk
Z},jl Fy, k=0

z € i (p) = co(AD), p) iff (AP z), Pn — 0.

And

Example 8.2: (Motzkin-generated domains). Let u,= M, (Example 3.2(c)) and AM: = AW, Then

1 n
(A(j”)-fl;)n = <=n a7 M, _rxp
k=0 l?'l_[k kgﬂ
x € 600 (p) = ((ADD, p) iff 52 [(AM )| < oo.

and

Remark 8.3. By Proposition 5.2, each AW(p) is (isometrically) isomorphic to A(p) via x 7 — AUx. Hence properties such as
separability, existence of Schauder bases (when available), and dual formulas transfer from A(p) to A4(p), while the concrete
membership test is encoded by the specific weights u (Fibonacci, Pell, Motzkin, Catalan, etc.).

9. Conclusion

We provided a general framework for matrix domains X of paranormed FK-spaces under triangles, emphasizing Norlund
matrices generated by admissible combinatorial sequences. The key structural features completeness, FK-property, basis transfer,
and dual descriptions are stable under passage to such matrix domains, and the inverse triangle A™! provides the natural
mechanism for transporting duality. These results serve as a convenient platform for further extensions, e.g. Orlicz-paranormed
matrix domains and classes of matrix mappings between different domains.

References

1. Maddox 1J. Spaces of strongly summable sequences. Quarterly Journal of Mathematics (Oxford Series). 1967;18(1):345-355.
doi:10.1093/gmath/18.1.345.

2. Maddox 1J. Paranormed sequence spaces generated by infinite matrices. Proceedings of the Cambridge Philosophical Society.
1968;64(2):335-340. doi:10.1017/S0305004100042894.

3. Basar F, Altay B. Matrix mappings on the space bs(p) and its a-, - and y-duals. Aligarh Bulletin of Mathematics.
2002;21(1):79-91.

4. Altay B, Bagar F. On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics.

~11~


https://www.mathematicaljournal.com/

Journal of Mathematical Problems, Equations and Statistics https://www.mathematicaljournal.com

2003;26(5):701-715.

5. Altay B, Basar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. Journal of
Mathematical Analysis and Applications. 2006;319(2):494-508. doi:10.1016/j.jmaa.2005.06.055.

6. Choudhary B, Mishra SK. On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations. Indian
Journal of Pure and Applied Mathematics. 1993;24(5):291-301.

7. Basar F, Yesilkayagil M. A survey for paranormed sequence spaces generated by infinite matrices. TWMS Journal of Pure
and Applied Mathematics. 2019;10(1):3-38.

~12~


https://www.mathematicaljournal.com/

