

E-ISSN: 2709-9407
 P-ISSN: 2709-9393
 Impact Factor (RJIF): 5.94
 JMPES 2026; 7(1): 06-12
 © 2026 JMPES
www.mathematicaljournal.com
 Received: 07-11-2025
 Accepted: 10-12-2025

Anil Singh
 Research Scholar, Department of Mathematics, Aarni University, Himachal Pradesh, India

Dr. Mudasir Ahmad Lone
 Assistant Professor, Department of Mathematics, Aarni University, Himachal Pradesh, India

Matrix domains of Maddox-type Paranormed sequence spaces induced by Norlund matrices from combinatorial sequences

Anil Singh and Mudasir Ahmad Lone

DOI: <https://www.doi.org/10.22271/math.2026.v7.i1a.279>

Abstract

We study matrix domains of paranormed sequence spaces obtained by applying lower triangular (triangle) matrices to Maddox-type variable-exponent spaces. A flexible family of such triangles is produced by N'orlund matrices generated from admissible weight sequences, including Fibonacci, Pell, Motzkin, and Catalan numbers. For a base paranormed FK-space $X \subseteq \omega$ and a triangle A , the associated matrix domain $X_A = \{x \in \omega : Ax \in X\}$ is equipped with the transported paranorm $q_A(x) = qx(Ax)$. We prove that completeness and the FK-structure pass from X to X_A , that X_A is (isometrically) isomorphic to X via the map $x \rightarrow Ax$, and that Schauder bases are preserved under passage to matrix domains. Finally, we describe the K'otho-Toeplitz α -, β -, and γ -duals of X_A in terms of the corresponding duals of X and the inverse triangle A^{-1} , and we specialize the general results to N'orlund matrices arising from classical integer sequences.

Keywords: Paranormed sequence spaces, variable exponents; matrix domains, triangles, Norlund matrices; Schauder bases, Kothe-Toeplitz duals

1. Introduction

Matrix transformations and matrix domains are a standard and powerful tool in sequence space theory and summability. Given a sequence space $X \subseteq \omega$ and an infinite matrix $A = (a_{nk})$, one may encode additional analytic structure by passing from X to the *matrix domain* $X_A := \{x \in \omega : Ax \in X\}$.

When A is a triangle (lower triangular with nonzero diagonal entries), the map $x \rightarrow Ax$ is invertible on ω and often transports structural features of X (completeness, bases, dual descriptions) to the new space X_A .

In this paper we focus on paranormed sequence spaces of Maddox type (with variable exponents) and on triangles generated by admissible weight sequences through a Norlund construction. Maddox introduced and developed several variable-exponent sequence spaces and their basic properties [1, 2]. Since then, many authors studied matrix domains and related duality/basis questions for paranormed (and non-absolute type) sequence spaces; see for instance [3-7] and references therein.

Our goals are:

- to present a unified construction of Norlund-type triangles from admissible sequences (including Fibonacci, Pell, Motzkin, Catalan weights);
- to develop topological and linear-structural results for matrix domains X_A of paranormed FK-spaces X under triangles A ;
- to prove preservation of Schauder bases under triangular matrix domains;
- to give systematic descriptions of Kothe-Toeplitz duals of X_A via the inverse matrix A^{-1} .

1.1 Preliminaries and notation

Throughout, $\omega = \omega$ denotes the space of all complex sequences $x = (x_k)_{k \geq 0}$, and all linear spaces are over \mathbb{C} .

1.2 Triangles and matrix transformations

An infinite matrix $A = (a_{nk})_{n,k \geq 0}$ acts (formally) on $x \in \omega$ by

Corresponding Author:
Anil Singh
 Research Scholar, Department of Mathematics, Aarni University, Himachal Pradesh, India

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, n \geq 0,$$

whenever each row sum is meaningful. A matrix is called a *triangle* if $a_{nk} = 0$ for $k > n$ and $a_{nn} \neq 0$ for all $n \geq 0$. For triangles, each row sum is finite, so Ax is defined for all $x \in \omega$.

2. Paranormed FK-spaces

We use the following standard terminology.

Definition 2.1: (Paranorm, FK-space). Let X be a linear space. A map $q: X \rightarrow [0, \infty)$ is a *paranorm* if:

- $q(x) = 0 \iff x = 0$,
- $q(-x) = q(x)$ for all $x \in X$,
- $q(x+y) \leq q(x) + q(y)$ for all $x, y \in X$,
- if $a_n \rightarrow 0$ in C , then $q(a_n x) \rightarrow 0$ for each fixed $x \in X$.

A paranormed space (X, q) is an *FK-space* (a Fréchet coordinate space) if it is complete with respect to the metric $d(x, y) = q(x-y)$ and each coordinate functional $p_k(x) = x_k$ is continuous on X (when $X \subseteq \omega$).

Köthe-Toeplitz α -, β -, γ - duals

Definition 2.2: (Kothe-Toeplitz duals). Let $X \subseteq \omega$ be a sequence space and define $\langle x, y \rangle := \sum_{k=0}^{\infty} x_k y_k$ whenever the series converges.

(i) The α -dual is

$$X^{\alpha} := \left\{ y \in \omega : \sum_{k=0}^{\infty} |x_k y_k| < \infty \text{ for all } x \in X \right\}$$

(ii) The β -dual is

$$X^{\beta} := \left\{ y \in \omega : \sum_{k=0}^{\infty} x_k y_k \text{ converges for all } x \in X \right\}$$

(iii) The γ -dual is

$$X^{\gamma} := \left\{ y \in \omega : \left(\sum_{k=0}^n x_k y_k \right)_{n \geq 0} \text{ is bounded for all } x \in X \right\}$$

is bounded for all $x \in X$.

Remark 2.3. Always $X^{\alpha} \subseteq X^{\beta} \subseteq X^{\gamma}$.

3. Admissible sequences and Nörlund matrices

Admissible sequences

Definition 3.1: (Admissible sequence). Let $u = (u_n)_{n \geq 0}$ be a sequence of positive real numbers and define

$$U_n := \sum_{k=0}^n u_k \quad n \geq 0.$$

We call u *admissible* if $u_n > 0$ for all n and $U_n \rightarrow \infty$ as $n \rightarrow \infty$.

Example 3.2: (Fibonacci, Pell, Motzkin, Catalan). Each of the following yields an admissible sequence u :

- Fibonacci weights: $u_n = F_{n+1}$ where $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$.
- Pell weights: $u_n = P_{n+1}$ where $P_0 = 0$, $P_1 = 1$, $P_{n+2} = 2P_{n+1} + P_n$.
- Motzkin weights: $u_n = M_n$ where $M_0 = 1$, $M_1 = 1$ and $M_{n+1} = M_n + \sum_{k=0}^{n-1} M_k M_{n-1-k}$ for $n \geq 1$.
- Catalan weights: $u_n = C_n = \frac{1}{n+1} \binom{2n}{n}$.

Nörlund matrices

Definition 3.3: (Nörlund matrix). Let u be admissible and $U_n = \sum_{k=0}^n u_k$. The *Nörlund matrix* $A^{(u)} = (a_{nk}^{(u)})_{n,k \geq 0}$ generated by u is defined by

$$a_{nk}^{(u)} := \begin{cases} \frac{u_{n-k}}{U_n}, & 0 \leq k \leq n, \\ 0, & k > n. \end{cases}$$

For $x \in \omega$ we have

$$(A^{(u)}x)_n = \sum_{k=0}^n a_{nk}^{(u)} x_k = \frac{1}{U_n} \sum_{k=0}^n u_{n-k} x_k,$$

a weighted mean of x_0, \dots, x_n .

Proposition 3.4: Let u be admissible and $A^{(u)}$ be as in Definition 3.3. Then:

(i) $A^{(u)}$ is a triangle with strictly positive diagonal entries $a_{nn}^{(u)} = u_0/U_n > 0$. Hence it is invertible on ω and its inverse $B^{(u)} = (A^{(u)})^{-1}$ is again a triangle. (ii) Each row sums to 1: for all $n \geq 0$,

$$\sum_{k=0}^n a_{nk}^{(u)} = 1.$$

Proof. (i) By definition $a_{nk}^{(u)} = 0$ for $k > n$, and $a_{nn}^{(u)} = u_0/U_n > 0$. A triangle with nonzero diagonal is invertible on ω , with inverse obtained recursively from $A^{(u)}B^{(u)} = I$. (ii) For fixed n ,

$$\sum_{k=0}^n a_{nk}^{(u)} = \frac{1}{U_n} \sum_{k=0}^n u_{n-k} = \frac{1}{U_n} \sum_{j=0}^n u_j = 1.$$

Proposition 3.5: Let u be admissible. Then:

- (i) $A^{(u)}$ defines a bounded operator on $(\ell_\infty, \|\cdot\|_\infty)$ with operator norm 1.
- (ii) $A^{(u)}$ maps c into c and c_0 into c_0 .

Proof. (i) Let $x \in \ell_\infty$ and $M = \|x\|_\infty$. Then

$$|(A^{(u)}x)_n| \leq \frac{1}{U_n} \sum_{k=0}^n u_{n-k} |x_k| \leq \frac{M}{U_n} \sum_{k=0}^n u_{n-k} = M,$$

so $\|A^{(u)}x\|_\infty \leq \|x\|_\infty$. Also $A^{(u)}1 = 1$, so the norm is exactly 1.

(ii) If $x \in c$ with $\lim x_k = L$, then

$$(A^{(u)}x)_n - L = \frac{1}{U_n} \sum_{k=0}^n u_{n-k} (x_k - L)$$

Fix $\varepsilon > 0$ and choose N with $|x_k - L| < \varepsilon$ for $k \geq N$. Split the sum into $k < N$ and $k \geq N$. The tail part is bounded by ε , while the finite part is bounded by C/U_n for some constant C , hence goes to 0 since $U_n \rightarrow \infty$. Thus $(A^{(u)}x)_n \rightarrow L$. The case $x \in c_0$ is the special case $L = 0$.

4. Maddox-type paranormed spaces and matrix domains

4.1: Maddox-type variable exponent spaces

Let $p = (p_k)_{k \geq 0}$ be a sequence of positive reals with

$$0 < H_1 := \inf_{k \geq 0} p_k \leq \sup_{k \geq 0} p_k =: H_2 < \infty,$$

and fix $M \geq \max\{1, H_2\}$.

Definition 4.2: (Maddox-type spaces). Define:

$$(i) c_0(p) := \{x \in \omega : |x_k|^{p_k} \rightarrow 0\}, \quad q_{c_0(p)}(x) := \sup_{k \geq 0} |x_k|^{p_k/M}.$$

$$(ii) c(p) := \{x \in \omega : \exists \ell \in \mathbb{C}, |x_k - \ell|^{p_k} \rightarrow 0\}, \quad q_{c(p)}(x) := \inf_{\ell \in \mathbb{C}} \sup_{k \geq 0} |x_k - \ell|^{p_k/M}.$$

$$(iii) \ell_\infty(p) := \left\{ x \in \omega : \sup_{k \geq 0} |x_k|^{p_k/M} < \infty \right\}, \quad q_{\ell_\infty(p)}(x) := \sup_{k \geq 0} |x_k|^{p_k/M}.$$

$$(iv) \ell(p) := \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k|^{p_k} < \infty \right\}, \quad q_{\ell(p)}(x) := \left(\sum_{k=0}^{\infty} |x_k|^{p_k} \right)^{1/M}.$$

Remark 4.2. If $p_k \equiv p$ is constant, these spaces reduce (up to equivalent paranorms) to classical spaces: $c_0(p) = c_0$, $c(p) = c$, $\ell_\infty(p) = \ell_\infty$, $\ell(p) = \ell_p$.

It is known that these are complete paranormed FK-spaces with continuous coordinate functionals; see [1, 2, 3, 5, 7].

Matrix domains

Definition 4.3: (Matrix domain). Let $(X, q_X) \subseteq \omega$ be a paranormed FK-space and let A be a triangle. Define

$$X_A := \{x \in \omega : Ax \in X\}, \quad q_A(x) := q_X(Ax).$$

Remark 4.4. Even if X is of absolute type, X_A is typically of non-absolute type when A has nontrivial off-diagonal entries, since membership depends on linear combinations in Ax and may involve cancellations.

Definition 4.4: For $\lambda \in \{c_0, c, \ell_\infty, \ell\}$ and $X = \lambda(p)$, set

$$\lambda(A, p) := X_A = \{x \in \omega : Ax \in \lambda(p)\}, \quad q_{\lambda(A, p)}(x) := q_{\lambda(p)}(Ax).$$

If $A = A^{(u)}$ is a Nörlund matrix, we also write $\lambda^{(u)}(p) := \lambda(A^{(u)}, p)$.

5. Topological structure of triangular matrix domains

Theorem 5.1: (FK-structure and completeness). Let $(X, q_X) \subseteq \omega$ be a complete paranormed FK-space and let A be a triangle. Then (X_A, q_A) is a complete paranormed FK-space.

Proof. Linearity of X_A and the paranorm properties of $q_A(x) = q_X(Ax)$ follow from linearity of A and the paranorm axioms of q_X .

Let $(x^{(m)})$ be Cauchy in (X_A, q_A) . Then $(Ax^{(m)})$ is Cauchy in X since

$$q_X(Ax(m) - Ax(r)) = q_A(x(m) - x(r)) \rightarrow 0.$$

By completeness of X , there exists $y \in X$ with $Ax^{(m)} \rightarrow y$ in X .

Since A is a triangle, the equation $Az = y$ has a unique solution $z \in \omega$ obtained by back substitution, and $z \in X_A$ because $Az = y \in X$. Finally,

$$q_A(x^{(m)} - z) = q_X(Ax^{(m)} - Az) = q_X(Ax^{(m)} - y) \rightarrow 0,$$

so $x^{(m)} \rightarrow z$ in X_A . Hence X_A is complete.

To see continuity of coordinate functionals on X_A , note that A^{-1} is a triangle $B = (b_{nk})$, and for $x \in X_A$ we have $x = BAx$. Thus for each k ,

$$x_k = \sum_{l=0}^k b_{kj}(Ax)j,$$

a finite linear combination of continuous coordinate functionals on X composed with the continuous map $x \rightarrow Ax$. Hence each $x \rightarrow x_k$ is continuous on X_A . Therefore X_A is an FK-space.

Proposition 5.2: (Isometric isomorphism). Let (X, q_X) and A be as in Theorem 5.1. Then

$$T_A : (X_A, q_A) \rightarrow (X, q_X), \quad T_A(x) = Ax,$$

is a linear bijective isometry. In particular, X_A and X are linearly homeomorphic.

Proof. By definition, T_A is linear and well-defined, and $q_X(T_Ax) = q_X(Ax) = q_A(x)$, so it is an isometry into X . Since A is invertible on ω with inverse triangle $B = A^{-1}$, for each $y \in X$ we have $x := By \in \omega$ and $Ax = y$, hence $x \in X_A$ and $T_A(x) = y$. Thus T_A is surjective. Injectivity follows from invertibility of A . Therefore T_A is a bijective isometry.

Corollary 5.3: Let $\lambda \in \{c_0, c, \ell_\infty, \ell\}$, let p satisfy $0 < H_1 \leq p_k \leq H_2 < \infty$, and let A be any triangle (in particular a Nörlund matrix $A^{(u)}$). Then $\lambda(A, p)$ is linearly isomorphic (indeed, isometric via $x \rightarrow Ax$) to $\lambda(p)$.

Proof. Apply Proposition 5.2 with $X = \lambda(p)$.

Lemma 5.4: (Inclusion via relative boundedness). Let (X, q_X) be a complete paranormed space and let A, B be triangles. Assume that $C := BA^{-1}$ defines a bounded linear operator on X (i.e. there is $K > 0$ such that $q_X(Cz) \leq Kq_X(z)$ for all $z \in X$). Then $X_A \subseteq X_B$ and

$$q_B(x) \leq K q_A(x) \quad (x \in X_A).$$

Proof. If $x \in X_A$, set $z := Ax \in X$. Then $Bx = BA^{-1}z = Cz \in X$, so $x \in X_B$. Moreover,

$$q_B(x) = q_X(Bx) = q_X(Cz) \leq Kq_X(z) = Kq_A(Ax) = Kq_A(x).$$

6. Schauder bases in matrix domains

Theorem 6.1: (Basis transfer). Let $(X, q_X) \subseteq \omega$ be a paranormed FK-space that admits a Schauder basis $(u^{(n)})_{n \geq 0}$ with continuous

coordinate functionals. Let A be a triangle and X_A its matrix domain. Then the sequence

$$e_A^{(n)} := A^{-1}u^{(n)}, \quad n \geq 0,$$

is a Schauder basis for X_A , and its coordinate functionals are continuous.

Proof. Let $T_A : X_A \rightarrow X$ be the isometric isomorphism $T_A(x) = Ax$. For any $x \in X_A$, put $y := Ax \in X$. Since $(u^{(n)})$ is a Schauder basis of X , there are unique scalars (α_n) such that

$$y = \sum_{n=0}^{\infty} \alpha_n u^{(n)} \quad \text{in } X.$$

Applying A^{-1} gives

$$x = A^{-1}y = \sum_{n=0}^{\infty} \alpha_n A^{-1}u^{(n)} = \sum_{n=0}^{\infty} \alpha_n e_A^{(n)}.$$

If $S_N = \sum_{n=0}^N \alpha_n e_A^{(n)}$, then $AS_N = \sum_{n=0}^N \alpha_n u^{(n)} \rightarrow y$ in X , hence

$$q_A(x - S_N) = q_X(Ax - AS_N) = q_X\left(y - \sum_{n=0}^N \alpha_n u^{(n)}\right) \rightarrow 0.$$

Uniqueness of coefficients follows by applying A and using uniqueness in X .

For coordinate functionals, if φ_n are the continuous coefficient maps on X associated with $(u^{(n)})$, define $\psi_n(x) := \varphi_n(Ax)$. Then ψ_n is continuous on X_A and returns the coefficient of $e_A^{(n)}$ in the expansion of x .

Corollary 6.2: (Column basis for Maddox-type spaces). *Let $X \in \{c_0(p), c(p), \ell_\infty(p)\}$, and let A be a triangle with inverse $B = (b_{nk})$. Then the columns of B form a Schauder basis of X_A :*

$$eb(n) := (b_{kn})_{k \geq 0}, \quad n \geq 0.$$

Proof. For $X \in \{c_0(p), c(p), \ell_\infty(p)\}$ the canonical unit vectors $(e^{(n)})$ form a Schauder basis. Apply Theorem 6.1 with $u^{(n)} = e^{(n)}$ and note that $A^{-1}e^{(n)}$ is exactly the n th column of B .

7. Kothe-Toeplitz duals of matrix domains

Let A be a triangle and $B = A^{-1} = (b_{nk})$.

For $y \in \omega$, define the sequence $yB \in \omega$ by

$$(yB)_n := \sum_{k=0}^{\infty} y_k b_{kn} = \sum_{k=n}^{\infty} y_k b_{kn}, \quad n \geq 0, \quad (1)$$

where the sum is finite for each fixed n since $b_{kn} = 0$ when $k < n$.

Lemma 7.1: (Pairing transfer). *Let $X \subseteq \omega$ be any sequence space, let A be a triangle, and let X_A be the matrix domain. Then for every $x \in X_A$ and $y \in \omega$,*

$$\langle x, y \rangle = \langle Ax, yB \rangle,$$

whenever either side is absolutely convergent (hence the rearrangements below are valid). *Proof.* Let $x \in X_A$ and set $z := Ax \in X$. Since $x = Bz$ and B is lower triangular,

$$k x_k = \sum_{n=0}^{\infty} b_{kn} z_n.$$

$$n = 0$$

Hence

$$\langle x, y \rangle = \sum_{k=0}^{\infty} x_k y_k = \sum_{k=0}^{\infty} \sum_{n=0}^k b_{kn} z_n y_k = \sum_{n=0}^{\infty} \left(\sum_{k=n}^{\infty} y_k b_{kn} \right) z_n = \sum_{n=0}^{\infty} z_n (yB)_n = \langle z, yB \rangle = \langle Ax, yB \rangle,$$

where we used the definition of yB in (1).

Theorem 7.2: (Duals via the inverse matrix). *Let $X \subseteq \omega$ be a sequence space and let A be a triangle with inverse $B = A^{-1}$. Then:*

$$(X_A)^\alpha = \{y \in \omega : yB \in X^\alpha\},$$

$$(X_A)^\beta = \{y \in \omega : yB \in X^\beta\}, (X_A)^\gamma = \{y \in \omega : yB \in X^\gamma\}.$$

Proof. We show the α -case; the others are analogous.

Assume $y \in (X_A)^\alpha$. Let $z \in X$ be arbitrary and write $x := Bz \in X_A$ (since $Ax = z$). Then by Lemma 7.1,

$$\sum_{n=0}^{\infty} |z_n(yB)_n| = \sum_{n=0}^{\infty} |(Ax)_n(yB)_n| = \sum_{k=0}^{\infty} |x_k y_k| < \infty,$$

so $yB \in X^\alpha$.

Conversely, suppose $yB \in X^\alpha$ and take any $x \in X_A$ with $z := Ax \in X$. Again by Lemma 7.1,

$$\begin{array}{ccc} \infty & \infty \\ X & X \\ |x_k y_k| = & |z_n(yB)_n| < \infty, \\ k=0 & n=0 \end{array}$$

so $y \in (X_A)^\alpha$. This proves the first identity. The β -case replaces absolute convergence by convergence; the γ -case uses boundedness of partial sums and the same transfer identity.

8. Specialized matrix domains from Fibonacci, Pell, Motzkin, Catalan weights

Fix $\lambda \in \{c_0, c, \ell_\infty, \ell\}$ and an exponent sequence p as in Definition 4.1. For an admissible weight sequence u , define $\lambda^{(u)}(p) := \lambda(A^{(u)}, p)$ $= \{x \in \omega : A^{(u)}x \in \lambda(p)\}$.

Then all general results above apply with $A = A^{(u)}$.

Example 8.1: (Fibonacci-generated domains). Let $u_n = F_{n+1}$ (Example 3.2(a)) and $A^{(F)} := A^{(u)}$. Then

$$(A^{(F)}x)_n = \frac{1}{\sum_{k=1}^{n+1} F_k} \sum_{k=0}^n F_{n-k+1} x_k$$

$$x \in c_0^{(F)}(p) := c_0(A^{(F)}, p) \text{ iff } |(A^{(F)}x)_n|^{p_n} \rightarrow 0.$$

And

Example 8.2: (Motzkin-generated domains). Let $u_n = M_n$ (Example 3.2(c)) and $A^{(M)} := A^{(u)}$. Then

$$(A^{(M)}x)_n = \frac{1}{\sum_{k=0}^n M_k} \sum_{k=0}^n M_{n-k} x_k$$

$$x \in \ell^{(M)}(p) := \ell(A^{(M)}, p) \text{ iff } \sum_{n=0}^{\infty} |(A^{(M)}x)_n|^{p_n} < \infty.$$

and

Remark 8.3. By Proposition 5.2, each $\lambda^{(u)}(p)$ is (isometrically) isomorphic to $\lambda(p)$ via $x \mapsto A^{(u)}x$. Hence properties such as separability, existence of Schauder bases (when available), and dual formulas transfer from $\lambda(p)$ to $\lambda^{(u)}(p)$, while the concrete membership test is encoded by the specific weights u (Fibonacci, Pell, Motzkin, Catalan, etc.).

9. Conclusion

We provided a general framework for matrix domains X_A of paranormed FK-spaces under triangles, emphasizing Norlund matrices generated by admissible combinatorial sequences. The key structural features completeness, FK-property, basis transfer, and dual descriptions are stable under passage to such matrix domains, and the inverse triangle A^{-1} provides the natural mechanism for transporting duality. These results serve as a convenient platform for further extensions, e.g. Orlicz-paranormed matrix domains and classes of matrix mappings between different domains.

References

1. Maddox II. Spaces of strongly summable sequences. Quarterly Journal of Mathematics (Oxford Series). 1967;18(1):345-355. doi:10.1093/qmath/18.1.345.
2. Maddox II. Paranormed sequence spaces generated by infinite matrices. Proceedings of the Cambridge Philosophical Society. 1968;64(2):335-340. doi:10.1017/S0305004100042894.
3. Başar F, Altay B. Matrix mappings on the space $bs(p)$ and its α -, β - and γ -duals. Aligarh Bulletin of Mathematics. 2002;21(1):79-91.
4. Altay B, Başar F. On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics.

2003;26(5):701-715.

5. Altay B, Başar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. *Journal of Mathematical Analysis and Applications*. 2006;319(2):494-508. doi:10.1016/j.jmaa.2005.06.055.
6. Choudhary B, Mishra SK. On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations. *Indian Journal of Pure and Applied Mathematics*. 1993;24(5):291-301.
7. Başar F, Yeşilkayagil M. A survey for paranormed sequence spaces generated by infinite matrices. *TWMS Journal of Pure and Applied Mathematics*. 2019;10(1):3-38.