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Abstract 

We study matrix domains of paranormed sequence spaces obtained by applying lower triangular 

(triangle) matrices to Maddox-type variable-exponent spaces. A flexible family of such triangles is 

produced by N¨orlund matrices generated from admissible weight sequences, including Fibonacci, Pell, 

Motzkin, and Catalan numbers. For a base paranormed FK-space X ⊆ ω and a triangle A, the associated 

matrix domain XA = {x∈ω: Ax∈X} is equipped with the transported paranorm qA(x) = qX(Ax). We prove 

that completeness and the FK-structure pass from X to XA, that XA is (isometrically) isomorphic to X via 

the map x→ Ax, and that Schauder bases are preserved under passage to matrix domains. Finally, we 

describe the K¨othe-Toeplitz α-, β-, and γ-duals of XA in terms of the corresponding duals of X and the 

inverse triangle A−1, and we specialize the general results to N¨orlund matrices arising from classical 

integer sequences. 

 

Keywords: Paranormed sequence spaces, variable exponents; matrix domains, triangles, Norlund 

matrices; Schauder bases, Kothe-Toeplitz duals 

 

1. Introduction 

Matrix transformations and matrix domains are a standard and powerful tool in sequence space 

theory and summability. Given a sequence space X ⊆ ω and an infinite matrix A = (ank), one 

may encode additional analytic structure by passing from X to the matrix domain 

XA : = {x ∈ ω : Ax ∈ X}. 

When A is a triangle (lower triangular with nonzero diagonal entries), the map x → Ax is 

invertible on ω and often transports structural features of X (completeness, bases, dual 

descriptions) to the new space XA. 

In this paper we focus on paranormed sequence spaces of Maddox type (with variable 

exponents) and on triangles generated by admissible weight sequences through a Norlund 

construction. Maddox introduced and developed several variable-exponent sequence spaces 

and their basic properties [1, 2]. Since then, many authors studied matrix domains and related 

duality/basis questions for paranormed (and non-absolute type) sequence spaces; see for 

instance [3-7] and references therein. 

Our goals are: 

 to present a unified construction of Norlund-type triangles from admissible sequences 

(including Fibonacci, Pell, Motzkin, Catalan weights); 

 to develop topological and linear-structural results for matrix domains XA of paranormed 

FK-spaces X under triangles A; 

 to prove preservation of Schauder bases under triangular matrix domains; 

 to give systematic descriptions of Kothe-Toeplitz duals of XA via the inverse matrix A−1. 

 

1.1 Preliminaries and notation 

Throughout, ω = ω denotes the space of all complex sequences x = (xk)k≥0, and all linear spaces 

are over C. 

 

1.2 Triangles and matrix transformations 

An infinite matrix A = (ank)n,k≥0 acts (formally) on x ∈ ω by 
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 (Ax)

n =  ∑  𝑎𝑛𝑘𝑥𝑘, 𝑛 ≥  0,∞
𝑘 = 0

  

 

whenever each row sum is meaningful. A matrix is called a triangle if ank = 0 for k > n and ann ≠0 for all n ≥ 0. For triangles, each 

row sum is finite, so Ax is defined for all x ∈ ω. 

 

2. Paranormed FK-spaces 

We use the following standard terminology. 

 

Definition 2.1: (Paranorm, FK-space). Let X be a linear space. A map q: X → [0,∞) is a paranorm if: 

 q(x) = 0 ⇐⇒ x = 0, 

 q(−x) = q(x) for all x ∈ X, 

 q(x + y) ≤ q(x) + q(y) for all x,y ∈ X, 

 if αn → 0 in C, then q(αnx) → 0 for each fixed x ∈ X. 

 

A paranormed space (X,q) is an FK-space (a Fr´echet coordinate space) if it is complete with respect to the metric d(x,y) = q(x−y) 

and each coordinate functional pk(x) = xk is continuous on X (when X ⊆ ω). 

Köthe-Toeplitz α-, β-, γ- duals 

 

Definition 2.2: (Kothe-Toeplitz duals). Let X ⊆ ω be a sequence space and define ⟨x,y⟩: =  whenever the series 

converges. 

 

(i) The α-dual is 

 

 
<∞ for all x ∈ X. 

 

(ii) The β-dual is 

 

 
 

converges for all x ∈ X . 

 

(iii) The γ-dual is 

 

 
 

is bounded for all x ∈ X . 

Remark 2.3. Always Xα ⊆ Xβ ⊆ Xγ. 

 

3. Admissible sequences and Norlund matrices 

Admissible sequences 

Definition 3.1: (Admissible sequence). Let u = (un)n≥0 be a sequence of positive real numbers and define 

 

Un : =  ∑ 𝑢𝑘𝑛
𝑘 = 0

  n ≥ 0. 

 

We call u admissible if un > 0 for all n and Un →∞ as n →∞. 

 

Example 3.2: (Fibonacci, Pell, Motzkin, Catalan). Each of the following yields an admissible sequence u: 

 Fibonacci weights: un = Fn + 1 where F0 = 0, F1 = 1, Fn + 2 = Fn + 1 + Fn. 

 Pell weights: un = Pn + 1 where P0 = 0, P1 = 1, Pn + 2 = 2Pn + 1 + Pn. 

 Motzkin weights: un = Mn where M0 = 1, M1 = 1 and for n ≥ 1. 

 Catalan weights: . 

 

Nörlund matrices 

Definition 3.3: (Nörlund matrix). Let u be admissible and Un = Pn
k = 0 uk. The Nörlund matrix  generated by u 

is defined by 
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For x ∈ ω we have 

 

, 

 

a weighted mean of x0,...,xn. 

 

Proposition 3.4: Let u be admissible and A(u) be as in Definition 3.3. Then: 

(i) A(u) is a triangle with strictly positive diagonal entries . Hence it is invertible on ω and its inverse B(u) = 

(A(u))−1 is again a triangle. (ii) Each row sums to 1: for all n ≥ 0, 

 

n 

X (u) 

ank = 1. 

k = 0 

Proof. (i) By definition  = 0 for k > n, and 0. A triangle with nonzero diagonal is invertible on ω, with 

inverse obtained recursively from A(u)B(u) = I. (ii) For fixed n, 

 

. 

 

Proposition 3.5: Let u be admissible. Then: 

(i) A(u) defines a bounded operator on (ℓ∞,∥·∥∞) with operator norm 1. 

(ii) A(u) maps c into c and c0 into c0. 

 

Proof. (i) Let x ∈ ℓ∞ and M = ∥x∥∞. Then 

 

 
 

so ∥A(u)x∥∞≤∥x∥∞. Also A(u)1 = 1, so the norm is exactly 1. 

 

(ii) If x ∈ c with limxk = L, then 

 

. 

 

Fix ε > 0 and choose N with |xk −L| < ε for k ≥ N. Split the sum into k < N and k ≥ N. The tail part is bounded by ε, while the finite 

part is bounded by C/Un for some constant C, hence goes to 0 since Un →∞. Thus (A(u)x)n → L. The case x ∈ c0 is the special case L 

= 0. 

 

4. Maddox-type paranormed spaces and matrix domains 

4.1: Maddox-type variable exponent spaces 

Let p = (pk)k≥0 be a sequence of positive reals with 

 

, 

 

and fix M ≥ max{1,H2}. 

 

Definition 4.2: (Maddox-type spaces). Define: 

 

(i) . 

 

(ii) . 
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(iii) . 

 

(iv) . 

 

Remark 4.2. If pk ≡ p is constant, these spaces reduce (up to equivalent paranorms) to classical spaces: c0(p) = c0, c(p) = c, ℓ∞(p) = 

ℓ∞, ℓ(p) = ℓp. 

It is known that these are complete paranormed FK-spaces with continuous coordinate functionals; see [1, 2, 3, 5, 7]. 

 

Matrix domains 

Definition 4.3: (Matrix domain). Let (X,qX) ⊆ ω be a paranormed FK-space and let A be a triangle. Define 

XA : = {x ∈ ω : Ax ∈ X}, qA(x) : = qX(Ax). 

Remark 4.4. Even if X is of absolute type, XA is typically of non-absolute type when A has nontrivial off-diagonal entries, since 

membership depends on linear combinations in Ax and may involve cancellations. 

 

Definition 4.4: For λ ∈{c0,c,ℓ∞,ℓ} and X = λ(p), set 

λ(A,p) : = XA = {x ∈ ω : Ax ∈ λ(p)}, qλ(A,p)(x) : = qλ(p)(Ax). 

If A = A(u) is a Nörlund matrix, we also write λ(u)(p) : = λ(A(u),p). 

 

5. Topological structure of triangular matrix domains 

Theorem 5.1: (FK-structure and completeness). Let (X,qX) ⊆ ω be a complete paranormed FK-space and let A be a triangle. 

Then (XA,qA) is a complete paranormed FK-space. 

Proof. Linearity of XA and the paranorm properties of qA(x) = qX(Ax) follow from linearity of A and the paranorm axioms of qX. 

Let (x(m)) be Cauchy in (XA,qA). Then (Ax(m)) is Cauchy in X since 

qX(Ax(m) − Ax(r)) = qA(x(m) − x(r)) → 0. 

By completeness of X, there exists y ∈ X with Ax(m) → y in X. 

Since A is a triangle, the equation Az = y has a unique solution z ∈ ω obtained by back substitution, and z ∈ XA because Az = y ∈ X. 

Finally, 

qA(x(m) − z) = qX(Ax(m) − Az) = qX(Ax(m) − y) → 0, 

so x(m) → z in XA. Hence XA is complete. 

To see continuity of coordinate functionals on XA, note that A−1 is a triangle B = (bnk), and for x ∈ XA we have x = BAx. Thus for 

each k, 

 

xk =  ∑ 𝑏𝑘𝑗(𝐴𝑥)𝑗,

𝑘

𝐼 = 0

 

 

a finite linear combination of continuous coordinate functionals on X composed with the continuous map x → Ax. Hence each x 

→ xk is continuous on XA. Therefore XA is an FK-space. 

 

Proposition 5.2: (Isometric isomorphism). Let (X,qX) and A be as in Theorem 5.1. Then 

 

TA : (XA,qA) → (X,qX), TA(x) = Ax, 

 

is a linear bijective isometry. In particular, XA and X are linearly homeomorphic. 

Proof. By definition, TA is linear and well-defined, and qX(TAx) = qX(Ax) = qA(x), so it is an isometry into X. Since A is invertible 

on ω with inverse triangle B = A−1, for each y ∈ X we have x : = By ∈ ω and Ax = y, hence x ∈ XA and TA(x) = y. Thus TA is 

surjective. Injectivity follows from invertibility of A. Therefore TA is a bijective isometry. 

 

Corollary 5.3: Let λ ∈{c0,c,ℓ∞,ℓ}, let p satisfy 0 < H1 ≤ pk ≤ H2 < ∞, and let A be any triangle (in particular a N¨orlund matrix 

A(u)). Then λ(A,p) is linearly isomorphic (indeed, isometric via x →7 Ax) to λ(p). 

Proof. Apply Proposition 5.2 with X = λ(p). 

 

Lemma 5.4: (Inclusion via relative boundedness). Let (X,qX) be a complete paranormed space and let A,B be triangles. Assume 

that C : = BA−1 defines a bounded linear operator on X (i.e. there is K > 0 such that qX(Cz) ≤ KqX(z) for all z ∈ X). Then XA ⊆ XB 

and 

qB(x) ≤ K qA(x) (x ∈ XA). 

Proof. If x ∈ XA, set z : = Ax ∈ X. Then Bx = BA−1z = Cz ∈ X, so x ∈ XB. Moreover, 

qB(x) = qX(Bx) = qX(Cz) ≤ KqX(z) = KqX(Ax) = KqA(x). 

 

6. Schauder bases in matrix domains 

Theorem 6.1: (Basis transfer). Let (X,qX) ⊆ ω be a paranormed FK-space that admits a Schauder basis (u(n))n≥0 with continuous 
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coordinate functionals. Let A be a triangle and XA its matrix domain. Then the sequence 

 

, 

 

is a Schauder basis for XA, and its coordinate functionals are continuous. 

Proof. Let TA : XA → X be the isometric isomorphism TA(x) = Ax. For any x ∈ XA, put y : = Ax ∈ X. Since (u(n)) is a Schauder basis 

of X, there are unique scalars (αn) such that 

 

in X. 

 

Applying A−1 gives 

 

. 

 

If , then , hence 

 

. 

 

Uniqueness of coefficients follows by applying A and using uniqueness in X. 

For coordinate functionals, if φn are the continuous coefficient maps on X associated with 

(u(n)), define ψn(x) : = φn(Ax). Then ψn is continuous on XA and returns the coefficient of e(
A

n) in the expansion of x. 

 

Corollary 6.2: (Column basis for Maddox-type spaces). Let X ∈{c0(p),c(p),ℓ∞(p)}, and let A be a triangle with inverse B = (bnk). 

Then the columns of B form a Schauder basis of XA: 

 

eb (n) : = (b kn)k≥0, n ≥ 0. 

 

Proof. For X ∈ {c0(p),c(p),ℓ∞(p)} the canonical unit vectors (e(n)) form a Schauder basis. Apply Theorem 6.1 with u(n) = e(n) and 

note that A−1e(n) is exactly the nth column of B. 

 

7. Kothe-Toeplitz duals of matrix domains 

Let A be a triangle and B = A−1 = (bnk). 

For y ∈ ω, define the sequence yB ∈ ω by 

 

, (1) 

 

where the sum is finite for each fixed n since bkn = 0 when k < n. 

 

Lemma 7.1: (Pairing transfer). Let X ⊆ ω be any sequence space, let A be a triangle, and let XA be the matrix domain. Then for 

every x ∈ XA and y ∈ ω, 

 

⟨x,y⟩ = ⟨Ax,yB⟩, 
 

whenever either side is absolutely convergent (hence the rearrangements below are valid). Proof. Let x ∈ XA and set z : = Ax ∈ X. 

Since x = Bz and B is lower triangular, 

k xk = Xbknzn. 

n = 0 

 

Hence 

, 

 

where we used the definition of yB in (1). 

 

Theorem 7.2: (Duals via the inverse matrix). Let X ⊆ ω be a sequence space and let A be a triangle with inverse B = A−1. Then: 
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(XA)α = {y ∈ ω : yB ∈ Xα}, 

(XA)β = {y ∈ ω : yB ∈ Xβ}, (XA)γ = {y ∈ ω : yB ∈ Xγ}. 

 

Proof. We show the α-case; the others are analogous. 

Assume y ∈ (XA)α. Let z ∈ X be arbitrary and write x : = Bz ∈ XA (since Ax = z). Then by Lemma 7.1, 

 

, 

 

so yB ∈ Xα. 

 

Conversely, suppose yB ∈ Xα and take any x ∈ XA with z : = Ax ∈ X. Again by Lemma 7.1, 

 

∞ ∞ 

X X 

|xkyk| =  |zn(yB)n| < ∞, 

k = 0 n = 0 

 

so y ∈ (XA)α. This proves the first identity. The β-case replaces absolute convergence by convergence; the γ-case uses boundedness 

of partial sums and the same transfer identity. 

 

8. Specialized matrix domains from Fibonacci, Pell, Motzkin, Catalan weights 

Fix λ ∈{c0,c,ℓ∞,ℓ} and an exponent sequence p as in Definition 4.1. For an admissible weight sequence u, define λ(u)(p) : = λ(A(u),p) 

= {x ∈ ω : A(u)x ∈ λ(p)}. 

 

Then all general results above apply with A = A(u). 

 

Example 8.1: (Fibonacci-generated domains). Let un = Fn + 1 (Example 3.2(a)) and A(F) : = A(u). Then 

n 

, 

 

And 

 

Example 8.2: (Motzkin-generated domains). Let un = Mn (Example 3.2(c)) and A(M) : = A(u). Then 

 

, 

 

and 

Remark 8.3. By Proposition 5.2, each λ(u)(p) is (isometrically) isomorphic to λ(p) via x 7 → A(u)x. Hence properties such as 

separability, existence of Schauder bases (when available), and dual formulas transfer from λ(p) to λ(u)(p), while the concrete 

membership test is encoded by the specific weights u (Fibonacci, Pell, Motzkin, Catalan, etc.). 

 

9. Conclusion 

We provided a general framework for matrix domains XA of paranormed FK-spaces under triangles, emphasizing Norlund 

matrices generated by admissible combinatorial sequences. The key structural features completeness, FK-property, basis transfer, 

and dual descriptions are stable under passage to such matrix domains, and the inverse triangle A−1 provides the natural 

mechanism for transporting duality. These results serve as a convenient platform for further extensions, e.g. Orlicz-paranormed 

matrix domains and classes of matrix mappings between different domains. 
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