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Abstract 
In this paper, blood flow in capillary analysis has been done by power law model, where one phase is 
core layer (cell phase) and another is plasma layer. Plasma, core layer have been taken Newtonian and 
non -Newtonian. Power index (n) calculated by newton Raphson python coding. Finally a linear 
relationship has been found between modulated blood pressure drop and hematocrit. Both MBPd AND 
Real clinical blood pressure drop have been compared using graphical approach. Almost both graph has 
given same trend with respect to hematocrit. 
 
Keywords: Hematocrit, palsma, Newtonian power index, two phase, MBPD, RCBPD 

 

Introduction 
Shear Thinning: As the shear rate rises, blood viscosity falls. Red blood cells (RBCs) have a 
tendency to cluster (form rouleaux) at low shear rates (slow flow), which raises viscosity. 
These clumps disintegrate and RBC deformability rises with increasing flow, which results in 
decreased viscosity [1]. The flexible membrane and cytoskeleton of red blood cells are 
primarily responsible for the blood's elastic and viscous characteristics. Microcirculatory flow 
dynamics and oxygen transport are impacted as a result of the cells' ability to deform and 
regain their shape [2, 3]. RBC aggregation causes a detectable yield stress in blood in extremely 
tiny channels or at low flow. In contrast to Newtonian fluids, which flow at all stress levels, 
this is the lowest stress required to initiate blood circulation [4, 6]. When blood is sheared or 
flows, its viscosity can alter; it stays low until the blood is allowed to rest and the aggregates 
re-form.  
Dependency on RBC and plasma composition: The rheological behaviour of blood in 
capillaries is dominated by RBC aggregation and deformability. Microvascular resistance and 
tissue perfusion are changed by conditions that impact these characteristics, such as illness, 
dehydration, or hereditary diseases. Despite small capillary widths, blood's non-Newtonian 
characteristics allow for efficient perfusion and oxygen transport in capillaries. In order to 
maintain proper tissue perfusion, shear thinning makes sure that blood may flow with less 
resistance as velocity increases. Reduced capillary flow and illness states such sickle cell 
disease or inflammation can be caused by impaired RBC deformability, increased aggregation, 
or enhanced viscosity. 
The physical and kinetic characteristics of RBCs and plasma components cause the non-
Newtonian behaviour of blood in capillaries, namely shear thinning and viscoelasticity, which 
directly affects tissue oxygenation and microvascular flow resistance [5]. 
Clinical features suggesting dengue related hepatic involvement are the presence of liver 
enlargement and elevated transaminases [7]. Among the clinical features of hepatic 
involvement, patients have abdominal pain (18%-63%), nausea/ vomiting (49%-58%) and 
anorexia [8, 9]. Symptoms such as abdominal pain and anorexia have been found to be 
significantly more common in DF than DHF [10]. Hepatomegaly is present in both DF and DHF 
but more common in DF [10]. The frequency of hepatomegaly in the adult dengue patients 
ranges from 4%-52% [9-11]. Clinical jaundice has been detected in 1.7%-17% in various series 
[6, 9, 10] and hyperbilirubinemia has been found to be as high as 48% [9]. 
A complex network of branching tubes, the circulatory system spans a broad range of flow 
velocities and geometrical sizes. Thus, a broad variety of fluid mechanical events are included 
in the mechanics of blood flow in the circulation. Inertial effects play a significant role in big 
blood arteries with dimensions between millimetres and centimetres. These vessels may also 
exhibit secondary flows, boundary layers, flow separation, instability, and occasionally 
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turbulence. Nonetheless, a simplifying characteristic of blood is that it functions essentially as a homogenous Newtonian fluid in 

vast blood arteries. In the microcirculation, things are the opposite. Inertial effects are insignificant since blood flow Reynolds 

numbers (Re) are usually significantly less than 1. For instance, based on a density of roughly 1 g/cm3 and a viscosity of roughly 

0.03 dyn s/cm2, Re is around 1.7 × 10−3 in a capillary with a diameter of 5 µm and a flow velocity of 1 mm/s. In an arteriole with 

a diameter of 100 µm and a flow rate of 2 cm/s, Re is around 0.7 in the upper range of microvessel sizes. Consequently, the 

Stokes equations for an incompressible fluid provide a decent estimate of the fluid flow [23]. 

One significant simplifying characteristic of these equations is their linearity. However, due to the large number of suspended 

cells—primarily highly deformable red blood cells, or erythrocytes-whose sizes are not much lower than the blood channel 

diameters, blood flowing in microvessels cannot be regarded as a homogenous fluid. Noncontinuum effects become quite 

important and need to be taken into account. Examining the mobility of a concentrated suspension of highly deformable particles 

in a geometrically intricate branching network of extremely tiny tubes is a major focus of the research of fluid mechanics of the 

microcirculation. 

 

 
 

The primary cause of the unique flow characteristics of blood in microvessels is the development of a cell-free or cell-depleted 

layer close to the vessel walls. This behaviour is influenced by a number of physical events (Figure 3). For instance, the radial 

distribution of cell centres is constrained by the RBC's limited size (Figure a). The centre of mass of an RBC in a disk-like form 

cannot physically approach within 1 µm of the wall since the minimum dimension is at least 2 µm. RBCs have a propensity to 

move away from a solid barrier when positioned in a shear flow next to it (Figure b). The Poiseuille velocity profile's curvature in 

tube flow creates a propensity for migration towards the flow's centerline regardless of wall influences (Figure c). An extra effect 

that does not exist in glass tubes occurs in microvessels in vivo. An exclusion zone for RBC movement is produced by the 

glycocalyx, also known as the ESL, which is made up of a matrix of macromolecules (Figure d). The numerous particle-particle 

interactions in a concentrated suspension's shear flow cause a net migration towards the walls along the concentration gradient 

(Figure e). The processes that push migration away from the wall are counteracted by this impact [23]. 

Here it is clear that flowing of blood is in two phase according to above discussion and figure is given below Since plasma layer 

has no cells inside so here we assume that it is Newtonian and another core layer is non-Newtonian 

 

 
 

Real Model 

When blood flows via a larger artery, Newtonian blood behaviour is reasonable to anticipate. It is not acceptable if the blood 

vessel is small (radius less than 1 mm). From the standpoint of biofluid mechanics, blood would not be expected to obey Newton's 

incredibly simple, one parameter, linearised law of viscosity. The non-Newtonian characteristics of blood can only be accurately 

represented by higher order constitutive equations, such as the power-law paradigm (Enderle et al.). 

 

Parametrization 

The blood's velocity𝑣𝑘 = 𝑣𝑘(𝑋𝑖 , 𝑡)𝑘 = 1, 2, 3 and any two thermodynamic quantities related to it, such as pressure, 𝑃 = 𝑃(𝑋𝑖 , 𝑡) 

and density, 𝜌 = 𝜌(𝑋𝑖 , 𝑡), were distributed according to functions that affected the mathematical description of the state of a 

moving blood. All thermodynamic quantities, together with the equation of state, are determined by the values of any two of them, 

as is often known. Thus, we may fully ascertain the condition of flowing blood if we have five variables: the density 𝜌, the 

pressure 𝑃, and the three components of velocity 𝑣𝑘.  

https://www.mathematicaljournal.com/
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The coordinates 𝑋𝑖 , 𝑖 = 1, 2, 3, and the time t are functions of all these values. It stressed that the blood's velocity at a given 

position 𝑋𝑖 in space and at a given time t was represented by the expression 𝑣𝑘(𝑋𝑖 , 𝑡). 

Let one unit volume of whole blood and 

𝑋 = volume fraction of plasma 

𝑌 = 1 − 𝑋 = volume fraction of RBC 

the mass ratio of RBC to plasma is 𝑚 

 

𝑚 =
𝑌𝜌𝐶

𝑋𝜌𝑃

 

 

where 𝜌𝐶 , 𝜌𝑃 , 𝜌𝑊 are the densities of RBC, plasma, WBC. 

we define density of blood mixture 𝜌𝑚 as follows 

 
1 + 𝑚

𝜌𝑚
=

𝑚

𝜌𝑐
+

1

𝜌𝑃
 

 

And viscosity of blood mixture 𝜂𝑚 as follows 

 

𝜂𝑚 = 𝑌𝜂𝑐 + 𝑋𝜂𝑃 

 

 
 

Boundary conditions. 

1. The velocity of blood flow on the axis of blood vessels at r = 0 will be maximum and finite, say 𝑣0 = maximum velocity. 

2. The velocity of blood flow on the wall of blood vessels at r = R, where, R is the radius of blood vessels, will be zero. This 

condition is well known as no slip condition. 

 

Equation of Continuity 

continuity equation for three phases 

 
𝜕((1−𝑋)𝜌𝑐)

𝜕𝑡
+ ((1 − 𝑋)𝜌𝑐𝑣𝑖),𝑖 = 0  [1] 

 
𝜕(𝑋𝜌𝑃)

𝜕𝑡
+ (𝑋𝜌𝑃𝑣𝑖),𝑖 = 0  [2] 

 

Where, 𝑣𝑖 is the common velocity of two phase blood cells and plasma. Again (𝑋𝜌𝑐𝑣𝑖),𝑖 is co-variant derivative of (𝑋𝜌𝑐𝑣𝑖) with 

respect to 𝑋𝑖. 

Equation of motion for blood flow with the three phases using the principle of force conservation (or momentum conservation) in 

hepatic arteries and assuming that the consistency coefficient (or viscosity coefficient) of RBC cells is 𝜂𝑐. 

 

(1 − 𝑋)𝜌𝑐
𝜕𝑣𝑖

𝜕𝑡
+ ((1 − 𝑋)𝜌𝑐𝑣𝑖) 𝑣,𝑗

𝑖 − (1 − 𝑋)𝑃,𝑗𝑔𝑖𝑗 + (1 − 𝑋)𝜂𝑐(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  

 

Similarly, taking the viscosity coefficient of plasma to be the equation of motion for plasma will be as follows- 

 

𝑋𝜌𝑃
𝜕𝑣𝑖

𝜕𝑡
+ (𝑋𝜌𝑃𝑣𝑖)𝑣,𝑗

𝑖 − 𝑋𝑃,𝑗𝑔𝑖𝑗 + 𝑋𝜂𝑃(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  

 

then equation of motion for blood flow with the all Two phases will be as follows- 

 

𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ (𝜌𝑚𝑣𝑗  )𝑣𝑖

,𝑗 = −𝑃,𝑗𝑔𝑖𝑗 + 𝜂𝑚(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  [3] 

 

Whenever percentage of blood is reduces the blood has been supposed Newtonian but in case of increasing the hematocrit, the 
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effective viscosity of blood flowing through arteries remote from the heart depends on the strain rate. 

For this reason, the blood will flow as non Newtonian fluid. When strain rate is in between 5 to 200 per second, the power law 

 

𝜏′ = 𝜂𝑚𝑒𝑛 

 

where 0.68≤𝑛 ≤0.80 Describes the flow of blood very well. The constitutive equation of blood is as follow 

Blood's constitutive equation is as follows: 

 

𝜏𝑖𝑗 = −𝑝𝑔𝑖𝑗 + 𝜂𝑚(𝑒𝑖𝑗)𝑛 = −𝑝𝑔𝑖𝑗 + 𝜏 ,𝑖𝑗   [4] 

 

Where 𝜏𝑖𝑗 is stress tensor and 𝜏 ,𝑖𝑗  is shearing stress tensor. 

 

Mathematical formulation 

The equation of continuity for power law flow will be as follows: 

 
1

√𝑔
(√𝑔𝑣𝑖),𝑖 = 0  [5] 

 

Again the equation in tensorial form is as follows: 

 

𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑚𝑣𝑗𝑣𝑖

,𝑗 = 𝜏𝑖𝑗
,𝑗  [6] 

 

Since the blood vessels are cylindrical, the above governing equation have to transformed into cylindrical co-ordinates. 

 

Let 𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝑧 

 

Matrix of corresponding metric tensor in cylindrical form is as follow: 

 

[𝑔𝑖𝑗] = [
1 0 0
0 𝑟2 0
0 0 1

] 

 

So Matrix of conjugate metric tensor is 

 

[𝑔𝑖𝑗] = [

1 0 0

0
1

𝑟2
0

0 0 1

] 

 

Where as Christoffel’s symbols of 2nd kind are as follows: 

 

{
1

2 2
} = −𝑟, {

2
2 1

} =  {
2

1 2
} =  

1

𝑟
  

 

except of these all are zero. 

contravarient and physical components of velocity of blood flow will be related as 

 

√𝑔11𝑣1 = 𝑣𝑟 =>  𝑣𝑟 = 𝑣1 

 

√𝑔22𝑣2 = 𝑣𝜃 =>  𝑣𝜃 =  𝑟𝑣2,  

 

√𝑔22𝑣3 = 𝑣𝑧 =>  𝑣𝑧 =  𝑣3 

 

Further the physical component of −𝑝,𝑗 𝑔𝑖𝑗  𝑎𝑟𝑒 − √𝑔𝑖𝑖𝑝,𝑗 𝑔𝑖𝑗 

The matrix of physical component of shearing stress – tensor 

 

𝜏 ,𝑖𝑗 = 𝜂𝑚(𝑒𝑖𝑗)𝑛 = 𝜂𝑚(𝑔𝑖𝑘𝑣,𝑘
𝑖 + 𝑔𝑗𝑘𝑣,𝑘

𝑗
)𝑛 [7] 

 

Will be as follows: 

 

[

0 0 𝜂𝑚(𝑑𝑣
𝑑𝑧⁄ )𝑛

0 0 0

𝜂𝑚(𝑑𝑣
𝑑𝑟⁄ )𝑛 0 0

] 

https://www.mathematicaljournal.com/
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The covariant derivative of 𝜏 ,𝑖𝑗 is 

 

𝜏,𝑗
,𝑖𝑗

=  
1

√𝑔

𝜕

𝜕𝑥𝑗 (√𝑔𝜏 ,𝑖𝑗) + {
𝑖

𝑗 𝑘} 𝜏 ,𝑘𝑗  [8] 

 

Keeping in view the above facts the governing tensorial equation can be transformed into cylindrical form which are as follows 

 

The Equation of continuity 

 
𝜕𝑣

𝜕𝑧
= 0 

 

The Equation of motion 

 

𝑟-Component 

 

−
𝜕𝑝

𝜕𝑟
= 0 

 

𝜃-Component 

 

0 = 0 

 

Z-Component 

 

0 = −
𝜕𝑝

𝜕𝑧
+

𝜂𝑚

𝑟
 

𝜕

𝜕𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

) 

 

These are the 𝑟, 𝜃, 𝑧 components respectively 

Further the fact has been considered that axial flow in artery is symmetric, so that 𝑣𝜃 = 0 𝑎𝑛𝑑 𝑣𝑟 , 𝑣𝑧 𝑎𝑛𝑑 𝑝 do not depend upon 𝜃. 

Also the blood flows steadily, i.e. 

 
𝜕𝑝

𝜕𝑡
=

𝜕𝑣𝑟

𝜕𝑡
=

𝜕𝑣𝜃

𝜕𝑡
=

𝜕𝑣𝑧

𝜕𝑡
= 0 

 

On integrating equation, we get 𝑣𝑧 = 𝑣(𝑟) because v does not depend upon 𝜃 

The integration of equation of motion, we get 𝑝 = 𝑝(𝑧) since p does not depend upon 𝜃 

Now, with the help of equation, the equation of motion converts in the following form: 

 

0 = −
𝑑𝑝

𝑑𝑧
+

𝜂𝑚

𝑟
 

𝑑

𝑑𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

)  [9] 

 

The pressure gradient −(
𝑑𝑝

𝑑𝑧
⁄ ) = 𝑃 of blood flow in the arteries remote from liver can be supposed to be constant and hence the 

equation takes the following form: 

 

𝑑

𝑑𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

) = − 
𝑃𝑟

𝜂𝑚
 

 

On integrating equation (9), we get 

 

𝑟 (
𝑑𝑣

𝑑𝑟
)

𝑛

= −
𝑃𝑟2

2𝜂𝑚
+ 𝐴  [10] 

 

We know that the velocity of blood flow on the axis of the cylindrical arteries is maximum and constant. So that the apply the 

boundary condition at r=0, v = 𝑉0(contant), on equation (10) to get the arbitrary constant A = 0. Hence the equation (11) takes the 

following form: 

 

𝑟 (
𝑑𝑣

𝑑𝑟
)

𝑛

=  −
𝑃𝑟2

2𝜂𝑚
 

 

−
𝑑𝑣

𝑑𝑟
= (

𝑃𝑟

2𝜂𝑚
)

1
𝑛⁄

  [11] 

 

Integrating equation (11) once again, we get 
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𝑣 = − (
𝑃

2𝜂𝑚
)

1
𝑛⁄

 
𝑟

1
𝑛+1

(𝑛+1)
𝑛⁄

+ 𝐵  [12] 

 
To determine the arbitrary constant B, we apply the no –slip condition n the inner wall of the arteries: at 𝑟 = 𝑅, 𝑉 = 0, where 𝑅 = 
radius of vessel, on equation (12) so as to get 
 

𝐵 = (
𝑃

2𝜂𝑚
)

1
𝑛⁄

 
𝑛𝑅

1

𝑛
+1

𝑛 + 1
 

 
Hence the equation takes the following form: 
 

𝑣 = (
𝑃

2𝜂𝑚
)

1

𝑛
 

𝑛

𝑛+1
[𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1]  [13] 

 
Which determines the velocity of blood flow in the arteries remote from the liver where P is gradient of blood pressure and 𝜂𝑚 is 
the viscosity of blood mixture. 
Shear stress  
 

𝜏 = (
𝑄(1 + 3𝑛)

𝜋𝑛
)

𝑛
𝑟𝜂𝑚

𝑅3𝑛+1
 

 

Strain rate 
𝑑𝑣

𝑑𝑟
= (

∆𝑃𝑟

2∆𝑧 𝜂𝑚
)

1
𝑛⁄

 

 
Analysis for hepatic capillary where one layer is Newtonian and other is non-Newtonian 
The basic equation can be written as before 
This is the velocity for non- Newtonian power law model 
 

𝑣 = (
𝑃

2𝜂𝑚
)

1

𝑛

 
𝑛

𝑛 + 1
[𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1] 

 

Let 𝑛 = 1 (Newtonianflow) 
 

𝑣𝑝 =
𝑃

4𝜂𝑚
 [𝑅2 − 𝑟2] ;𝑅 − 𝛿 ≤ 𝑟 ≤ 𝑅  [14] 

 
Where 𝛿 is the radius of core layer. 
 

𝑣 𝑐 = (
𝑃

2𝜂𝑚
)

1

𝑛
 

𝑛

𝑛+1
[𝑅

1

𝑛
+1 − (𝑅 − 𝛿)

1

𝑛
+1]  [15] 

. 

Relative velocity of plasma layer with respect to core layer is 𝑣𝑝 − 𝑣𝑐. 

 
The velocity of core layer is obtained as the formula of power law model as follows 
 

𝑣𝑚 = (
𝑃

2𝜂𝑚
)

1

𝑛
 

𝑛

𝑛+1
[𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1] + [

𝑃

4𝜂𝑝
 [𝑅2 − (𝑅 − 𝛿)2] − (

𝑃

2𝜂𝑚
)

1

𝑛
 

𝑛

𝑛+1
[𝑅

1

𝑛
+1 − (𝑅 − 𝛿)

1

𝑛
+1]] [16] 

 

0 ≤ 𝑟 ≤ 𝑅 − 𝛿 
 
The total flow- flux of blood through the transverse section of the arteries is 
 

𝑄 = ∫ [(
𝑃

2𝜂𝑚
)

1

𝑛
(

𝑛

𝑛+1
) (𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1) + {

𝑃

4𝜂𝑝
(𝑅2 − (𝑅 − 𝛿)2) − (

𝑃

2𝜂𝑚
)

1

𝑛
(

𝑛

𝑛+1
) (𝑅

1

𝑛
+1 − (𝑅 − 𝛿)

1

𝑛
+1)}] 2𝜋𝑟𝑑𝑟 + ∫

𝑃

4𝜂𝑝
(𝑅2 − 𝑟2)2𝜋𝑟𝑑𝑟

𝑅

𝑅−𝛿

𝑅−𝛿

0
  

 

𝑄 =
𝜋𝑛

1+3𝑛
(

𝑃

2𝜂𝑚
)

1

𝑛 (𝑅 − 𝛿)
1

𝑛
+3 +

𝜋𝑃

8𝜂𝑝
[𝑅4 − (𝑅 − 𝛿)4]  [17] 

 
Observations 
According to Glenn Elert (2010) 
𝜂𝑚 = viscosity of mixture = 0.0045 pascal sec 
According to Gustafson, Daniel R. (1980) 

𝜂𝑝 = Viscosity of plasma =0.0015 pascal sec 
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Table 1: Data of Dengue Patient 
 

S.N DATE B.P (mmHg) HB HCT 

1 09/12/2024 110.4/72.4 13.77 41.31 

2 10/12/2024 111.3/72.8 13.99 41.97 

3 13/12/2024 112.6/72.2 14.15 42.45 

4 14/12/2024 115.4/77.0 13.98 41.94 

5 15/12/2024 113.1/74.6 14.01 42.03 

 

Average Systolic Pressure =112.56 mm Hg 

Average Diastolic Pressure = 73.8 mm Hg 

Pressure drop =2473.79 pascal 

Average hematocrit =41.934 

 

Length of hepatic capillary =275 micrometer [24] 

 

Radius of capillary = 𝑅=6 micrometer [24] 

 

𝑅 − 𝛿 =
2

3
𝑅 = 4 𝑚𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 

 

𝜂𝑚 = 𝑌𝜂𝑐 + 𝑋𝜂𝑃 

 

𝜂𝑐 = 0.008654099 𝑝𝑎𝑠𝑐𝑎𝑙 𝑠𝑒𝑐 

 

𝜂𝑚 = 0.0000715𝐻 + 0.0015 

 

FLOW FLUX 𝑄 = 660
𝑚𝑙

𝑚𝑖𝑛
= 0.000011 𝑐𝑢𝑏𝑖𝑐

𝑚𝑒𝑡𝑒𝑟

𝑠𝑒𝑐
 

 

By equation  

 [17] 

0.000011 = (3998.04)
1

𝑛  
𝑛

(3𝑛 + 1)
(200.96 × 10−18) 

 

find value of n by newton Raphson method using python coding 

 

fx = (3.6018475/x) + log(x/(3*x + 1)) - 10.73725306 

 

fx_prime = (1/x) - (3/(1+ 3*x)) - (3.6018475/x**2) 

 

delta = fx/fx_prime 

 

x_new = x - delta 

 

return x_new, delta 

 

def get_optimized_value(x_init, n_iteration, eps): 

 

for i in range(n_iteration): 

 

try: 

 

x_new, delta = get_newton_raphson(x_init) 

 

print(x_new) 

 

temp = x_new 

 

If abs(delta)<=eps: 

n_iteration = i+1 

 

break 

 

x_init = x_new 
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Except: 

 

x_new = x_init 

 

n_interation = i 

 

abs_per_error = abs((x_new-x_init)/x_new) 

 

return x_new, n_iteration, abs_per_error 

 

if __name__=="__main__": 

 

x_init = 1 

 

n_interation = 2000 

 

eps = 0.00000000001 

 

x, n, abs_per_error = get_optimized_value(x_init=x_init, n_iteration=n_interation, eps=eps) 

 

print(f"x: {x}, n: {n}, abs_per_error: {abs_per_error}") 

0.2309713775586229 

0.29704416158965563 

0.3196993159967061 

0.32094151063369564 

0.320912900602739 

0.32091367276624067 

0.3209136519962187 

0.3209136525549516 

0.32091365253992116 

0.32091365254032544 

 

Initial Guess taken: 0.15 

 

Final result 

x: 0.32091365254032544, n: 10, abs_per_error: 1.2598021655262818e-10 

Finally here we put the all respective value in equation [17] 

We got the relation between blood pressure drop and hematocrit 

 

∆𝑃 = 39.33𝐻 + 825.20 

 
Table 2: MBPD AND RCBPD V/S hematocrit (H) 

 

S. No. Date Hematocrit (H) MBPD (∆𝑷𝒎𝒐𝒅𝒖) in Pascal RCBPD (∆𝑷𝒄𝒍𝒊𝒏) in Pascal WSS in pascal 

1 09/12/2024 42.03 2478.23 2566.60 18.02 

2 10/12/2024 41.97 2475.88 2566.60 18.00 

3 13/12/2024 42.45 2494.75 2693.26 18.14 

4 14/12/2024 41.94 2474.70 2561.26 17.99 

5 15/12/2024 41.31 2449.92 2533.27 17.81 

 

 

https://www.mathematicaljournal.com/


 

~492~ 

Journal of Mathematical Problems, Equations and Statistics                                                                                                   https://www.mathematicaljournal.com 
 

 
 

Conclusion 

Blood pressure drop decrease and hematocrit were shown to be linearly related ∆𝑃 = 39.33𝐻 + 825.20 and ∆𝑃𝑚𝑖𝑛 =
2449.92 pascal, ∆𝑃𝑚𝑎𝑥 = 2494.75. The trend line displays a low-steep downhill trend. Thus, we can up the medication dosage in 

this case to help the dengue patient recover quickly. We shall gradually reduce the medicine dosage if the trend line shows an 

upward tendency day by day. In this article, the doctor is advised to administer the medication dosage to the dengue patient during 

the case. 
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