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Abstract 

In this work, the stability analysis of systems of sub-fractional differential equations is carried out. 

Stability status of systems of fractional differential equations satisfying stability notions of fractional 

input stability, Mittag-Leffler input stability and global asymptotic stability have been determined. 

Stability theorems have been stated and examples have been given to illustrate the application of the 

theorems. 

 

Keywords: Fractional differential equations, Fractional input stability, Mittag-Leffler input stability, 
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Introduction 

Many scientific and engineering systems can be formulated as differential equations, 

especially those that require dynamical laws. There are basically two types of derivatives 

namely, fractional order derivative and integer order derivative. Fractional-order derivative 

deals with the whole time domain and space of a physical process, while the classical 

derivative is concerned with a particular time and local properties of a certain position. 

Fractional calculus, as a generalization of integer- order or classical calculus has been used as 

a valuable tool in the modelling of many physical phenomena and engineering systems. 

Research in fractional order systems is relatively new due to the absence of solution methods 

for fractional differential equations. Fractional order systems have more degrees of freedom in 

the model compared to integer order systems. Recently, fractional differential equations have 

become popular in modelling processes such as control theory, signal processing, 

bioengineering, circuit theory and viscoplasticity. Fractional differential equations also have 

great applications in other fields such as secure communication, data encryption, financial 

systems, chaos control and chaos synchronization. 

Further studies on fractional calculus have given rise to the development of many fractional 

derivatives such as Liouville-Riemann derivative [1], Caputo-Fabrizio derivative [2], 

Conformable derivative [3], Caputo-Liouville derivative [1], Atangana-Baleanu derivative [4, 5, 6] 

and others. The importance of stability analysis of systems cannot be over-stated. Stability 

analysis is carried out on systems because of its time-serving and resources conservation gains. 

It determines the pattern and behavior of the solutions of differential equations. Before 

analyzing, many physical systems are expressed or modelled as differential equations. The 

solutions of these differential equations are analysed to obtain the stability status of the 

differential systems. Over the years, many works focusing on stability analysis of differential 

equations for both classical and fractional order systems have been done [7-18]. Many 

researchers have developed stability conditions either necessary or sufficient conditions which 

are used in determining the stability status of differential systems [19-21]. Also, researchers have 

developed new fractional derivatives and methods of establishing systems stability [22-24]. 

Stability analysis of fractional differential equations involving external inputs is relatively new 

and was introduced into the literature of fractional differential equations by Sontag [25]. This 

has given rise to the evolution of various stability notions involving external inputs. Studies 

have been carried out on fractional input stability and Mittag-Leffler input stability of systems 

demonstrating converging-input-converging-state and bounded-input bounded-state properties 
[26, 27]. Akpan [17] investigated the stability status of the system of fractional differential 

equations with two sub-fractional differential equations which are fractional input stable and 

globally asymptotically stable respectively. 
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This work examines a system of fractional differential equation with three sub-fractional differential equations which are 

fractional input stable, Mittag-Leffler input stable and globally asymptotically stable. 

 

Definitions and Preliminary Analysis 

In this section, some definitions and concepts that would be needed in the analysis are given. 

 

Definition 2.1 

The Mittag-Leffler function with two parameters is defined by 

 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

, 

 

where the parameters 𝛼 > 0, 𝛽 ∈ ℝ and 𝑧 ∈ ℂ. For 𝛽 = 1, 𝐸𝛼(𝑧) = 𝐸𝛼,1(𝑧). 

 

Definition 2.2 

The set of all continuous map 𝛼: ℝ≥0 → ℝ≥0 satisfying 𝛼(0) = 0, and 𝛼(𝑡) > 0 for all 𝑡 > 0 represents the class PV function. A 

class K function is an increasing PV function. The class K∞  represents the set of all unbounded K functions. 

 

Definition 2.3 

The Caputo-Liouville generalized fractional derivative denoted by  𝐷𝑐
𝛼,𝜌

 is defined by 

 

(𝐷𝑐
𝛼,𝜌

𝑔)(𝑡) =
1

𝛤(1 − 𝛼)
∫ (

𝑡𝜌 − 𝑠𝜌

𝜌
)

−𝛼𝑡

0

𝑔′(𝑠)𝑑𝑠, 

 

for all 𝑡 > 0, where the order 𝛼 ∈ (0,1), 𝜌 > 0. 

 

Definition 2.4 

A fractional differential equation where a class KL function 𝛽 exists such that for any initial condition 𝑦0, the inequality 

 
‖ℎ(𝑡, 𝑦0)‖ ≤ 𝛽(‖𝑦0‖, 𝑡 − 𝑡0) 

 

holds. Then, the equation is globally asymptotically stable. 

 

Definition 2.5 

The origin of the unforced equation defined by 𝐷𝑐
𝛼𝑥 = 𝑓(𝑥, 0) is said to be Mittag-Leffler stable, if for any initial condition 𝑥0, its 

solution satisfies 

 

‖𝑥(𝑡, 𝑥0)‖ ≤ [𝑑(‖𝑥0‖)𝐸𝛼(𝜆(𝑡 − 𝑡0)𝛼)]
1

𝑞 

 

where 𝑞 > 0, and 𝑑 is locally Lipschitz[27]. 

 

Definition 2.6 

The equation defined by  𝐷𝛼
𝑐𝑥 = 𝑓(ℎ, 𝑥, 𝑣)is said to be Mittag-Leffler input stable if, for any input 𝑣 ∈ ℝ𝑛, there exists a 

K∞ function 𝛾 such that for any initial condition 𝑥0, its solution satisfies 

‖𝑥(ℎ, 𝑥0, 𝑣)‖ ≤ [𝜑(‖𝑥0‖)𝐸𝛼(𝜆(ℎ − ℎ0)𝛼)]
1

𝑞 +  𝛾(‖𝑣‖∞). 
 

where 𝜑 and 𝑞 > 0 are nonnegative constants [27]. 

 

Definition 2.7 [26] 

The equation defined by  𝐷𝛼
𝑐𝑦 = 𝑓(ℎ, 𝑥, 𝑣)is said to be fractional input stable if, for any input 𝑣 ∈ ℝ𝑛, a class KL function 𝛽 

exists and a K∞ function 𝛾 such that for any initial condition 𝑥(ℎ0), its solution satisfies 

 
‖𝑥(ℎ, 𝑥0, 𝑣)‖ ≤ 𝛽(‖𝑥0‖, ℎ − ℎ0) +  𝛾(‖𝑣‖∞) 

 

Definition 2.8 

The trivial solution to system 𝐷𝛼
𝑐𝑦 = 𝑓(ℎ, 𝑥, 0) is said to be stable if, for every 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) such that for any 

initial condition ‖𝑥0‖ < 𝛿, the solution 𝑥(ℎ) of the system 𝐷𝛼
𝑐 𝑥 = 𝑓(ℎ, 𝑥, 0) satisfies the inequality ‖𝑥0‖ < 𝜖 for all ℎ > ℎ0. 

The system 𝐷𝛼
𝑐 𝑦 = 𝑓(ℎ, 𝑥, 𝑣) which is stable and lim

ℎ→∞
𝑦(ℎ) = 0. Then, the system asymptotically stable. 

 

Main results 

Consider the system of equations 
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{

 𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3)

𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3)

𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3)

 (3.1) 

 

consisting of three sub-equations. The following theorems are stated and proved as the main results. 

 

Theorem 3.1 

Consider the system of fractional differential equation (3.1) where  𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) is fractional input stable, 𝐷𝑐
𝛼,𝜌

𝑔 =

𝑓(𝑥2, 𝑥3) is Mittag-Leffler input stable and 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3) is globally asymptotically stable. Then, the system (3.1) is globally 

asymptotically stable. 

 

Proof 

Consider the fractional input stability of the fractional differential equation 

 𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3). This implies the input of the differential equation is converging. Therefore, the solution of the equation is 

converging. This property is known as the Converging –Input-Converging-State (CICS). Also, the input is bounded and the 

solution is also bounded. This is known as the Bounded-Input-Bounded-State (BIBS) property. The equation 

𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) is therefore convergent. Mittag-Leffler input stability is a special case of FIS and therefore possesses the 

CICS and BIBS properties. Therefore, 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3) is convergent. For global asymptotic stability of the equation defined by 

𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3), it implies that lim
𝑡→∞

‖𝑥3(𝑡)‖ = 0. Therefore, equation (3.1) is convergent. 

Next, we use the stability notions to establish the stability of equation (3.1). If the equation 𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) is the fractional 

input stable, it implies that there exists a class KL function 𝛽1 and a 𝐾∞ function 𝛾, such that for any initial condition 𝜉1, its 

solution satisfies 

 
‖𝒙(𝒙𝟏, 𝒙𝟐, 𝒙𝟑)‖ ≤ 𝛽1(‖𝜉1‖, 𝑡 − 𝑡0) + 𝛾(‖𝑥2‖∞) 

 

≤ 𝛽1(‖𝜉1‖, 0) + 𝛾(‖𝑥2‖∞) 

 

≤  𝛽1(‖𝜉1‖, 0) + 𝛾(𝛽1(‖𝜉1‖, 0) (3.2) 

 

From the Mittag-Leffler input stability of the fractional differential equation 

𝐷𝑐
𝛼,𝜌

𝑥2 = 𝑓(𝑥2, 𝑥3), if for any input 𝑥 ∈ 𝑅3, there exists a class 𝐾∞ function 𝛾 such that for any initial condition 𝜉2, its solution 

satisfies 

‖𝑥(𝑥2, 𝑥3)‖ ≤ [𝛽2‖𝜉2‖𝐸𝛼(𝜆(𝑡 − 𝑡0)𝛼)]
1

𝑞 + 𝛾(‖𝑥3‖∞) 

 

≤ 𝛽2(‖𝜉2‖, 𝑡 − 𝑡0) + 𝛾(‖𝑥3‖∞) 

 

≤  𝛽2(‖𝜉2‖, 0) + 𝛾(𝛽2‖𝜉2‖, 0) (3.3) 

 

From global asymptotic stability of fractional differential equation 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3), there exists a class KL function 𝛽3 such that 

for any initial condition 𝜉3, we have 

‖𝒙𝟑(𝒕)‖ ≤ 𝛽3(‖𝜉3‖, 0) (3.4) 

From (3.2), (3.3) and (3.4), there exists 𝜖 such that ‖𝑥(𝑡)‖ = ‖𝑥(𝑥1, 𝑥2, 𝑥3)‖ ≤ 𝜖. 

Therefore, equation (3.1) is stable. Combining the convergence, boundedness and the stability of the component fractional 

differential equations, equation (3.1) is therefore Globally Asymptotically stable. 

 

Theorem 3.2 

Consider the system of fractional differential equation (3.1) where  𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3), 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3) are Mittag-Leffler 

input stable and 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3) is globally asymptotically stable. Then, the system (3.1) is globally asymptotically stable. 

 

Proof 

From the Mittag-Leffler input stability of  𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) and 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3), it follows that the fractional differential 

equations satisfy the CICS and BIBS properties. Therefore, the equations are convergent. From the global asymptotic stability of 

𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3), it implies that lim
𝑡→∞

‖𝑥3(𝑡)‖ = 0. Therefore, 𝐷𝑐
𝛼,𝜌

𝑥3 = 𝑓(𝑥3) is convergent. 

Also, from the Mittag-Leffler input stability of fractional differential equations 

𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) and 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3), the equations are stable(as in the proof of Theorem 3.1). Similarly, 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3) 

is stable since it is asymptotically stable. Combining the convergence and stability of the individual fractional differential 

equations, the system (3.1) is Globally Asymptotically Stable. 

 

Theorem 3.3 

Consider the system of fractional differential equation (3.1) where  𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3), 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3) are Mittag-Leffler 

input stable and 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3) is fractional input stable. Then, the system (3.1) is fractional input stable. 
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Proof 

The Mittag-Leffler input stability of 𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) and 𝐷𝑐
𝛼,𝜌

𝑔 = 𝑓(𝑥2, 𝑥3) implies the fractional differential equations are 

convergent and stable as in the proof of Theorem 3.1. Also, the fractional input stability of the equation 𝐷𝑐
𝛼,𝜌

𝑧 = 𝑓(𝑥3) is 

convergent and stable as in the proof of Theorem 3.1. But Mittag-Leffler input stability is a special case of fractional input 

stability. Therefore, the system (3.1) is Fractional Input Stable. 

 

Application and Analysis 

Example 1 

Consider the system of fractional differential equations consisting of sub-fractional differential equations 

 

{

 𝐷𝑐
𝛼,𝜌

𝑦 = −2𝑥1 + 2𝑥2

𝐷𝑐
𝛼,𝜌

𝑔 = 3𝑥1 − 𝑥2

𝐷𝑐
𝛼,𝜌

𝑧 = −4𝑥3

                         (4.1) 

 

where 𝐷𝑐
𝛼,𝜌

𝑦 = −2𝑥1 + 2𝑥2 is fractional input stable, 𝐷𝑐
𝛼,𝜌

𝑔 = 3𝑥1 − 𝑥2 is Mittag-Leffler input stable and 𝐷𝑐
𝛼,𝜌

𝑧 = −4𝑥3 is 

globally asymptotically stable. We show that the sub-fractional differential equation 

𝐷𝑐
𝛼,𝜌

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥2) = −2𝑥1 + 2𝑥2 (4.1a) 

is fractional input stable. The solution of (4.1a) is given by the following [28]. 

 

𝑦(𝑡) = 𝜉𝐸𝛼 (𝑃 (
𝑡𝜌

𝜌
)

𝛼

) + ∫ (
𝑡𝜌 − 𝑠𝜌

𝜌
)

𝛼−1
𝑡

0

𝐸𝛼,𝛼(𝑃 (
𝑡𝜌

𝜌
)

𝛼

𝑥2(𝑠)
𝑑𝑠

𝑠1−𝜌
 

 

Further modifications result in the following 

 
‖𝑦(𝑡)‖ ≤ 𝜇1(‖𝜉1‖, 𝑡𝜌) + 𝐺‖𝑥2‖ 

 

where 𝜇1(‖𝜉1‖, 𝑡𝜌) = 𝜉𝐸𝛼 (𝑃 (
𝑡𝜌

𝜌
)

𝛼

) and 𝐺 is a constant. This shows that equation(4.1a) satisfies CICS as well as BIBS and 

lim
𝑡→∞

‖𝑦(𝑡)‖ = 0 and therefore fractional input stable. 

The sub-fractional differential equation 

 

𝐷𝑐
𝛼,𝜌

𝑔 = 3𝑥1 − 𝑥2 (4.1b) 

 

exhibits the CICS and BIBS properties and therefore convergent. Also, lim
𝑡→∞

‖𝑔(𝑡)‖ = 0. 

Therefore, equation (4.1b) is Mittag-Leffler input stable. 

The sub-fractional differential equation 

 

𝐷𝑐
𝛼,𝜌

𝑧 = −4𝑥3 (4.1c) 

 

is obviously globally asymptotically stable. Combining the convergence and the stability of the individual fractional differential 

equations as well as utilizing Theorem 3.1, we conclude that system (4.1) is globally asymptotically stable. This result agrees with 

the result obtained by using the Matignon condition on system (4.1). 

 

Example 2 

Consider the system 

 

{

 𝐷𝑐
𝛼,𝜌

𝑦 = −3𝑥1 + 3𝑥2

𝐷𝑐
𝛼,𝜌

𝑔 = −4𝑥1 + 5𝑥2

𝐷𝑐
𝛼,𝜌

𝑧 = −6𝑥3

                         (4.2) 

 

where  𝐷𝑐
𝛼,𝜌

𝑦 = −3𝑥1 + 3𝑥2 and 𝐷𝑐
𝛼,𝜌

𝑔 = −4𝑥1 + 5𝑥2 are Mittag-Leffler input stable. This implies that CICS and BIBS 

properties are satisfied. Also, lim
𝑡→∞

‖𝑧(𝑡)‖ = 0. Therefore, the system (4.2) is convergent. 

The Mittag-Leffler input stability of these equations implies the stability of the sub-fractional differential equations. Also, the 

global asymptotic stability of 𝐷𝑐
𝛼,𝜌

𝑧 = −6𝑥3 implies the stability of the sub-fractional differential equation. Combining the 

convergence and stability as well as Theorem 3.2, we conclude that the system (4.2) is globally asymptotically stable. Applying 

the Matignon condition for establishing asymptotic stability, the result agrees with the result obtained by using Theorem 3.2. 

Similar analysis can be carried out to illustrate the utilization of Theorem 3.3. 

 

Conclusion 

Stability analysis of differential equations with external input is an emerging area of research with vast applications in sciences 

and engineering. The properties of the stability notions have been studied. Stability theorems for establishing the stability status of 
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the fractional differential systems have been stated and proved. Examples have been given to illustrate the application of the 

theorems. 
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