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Abstract 

In operator theory equations occur in various situations. Some authors who have used the numerical 

range in solutions of such equations have mainly put some conditions on the closure of the numerical 

range rather than its interior. In this paper our task is to try and relax the conditions on the closure to 

mere interior of the numerical range. 

AMS subject classification 47B47, 47A30,47B20. 
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Introduction 

In the sequel, Η denotes a complex Hilbert space and Β(Η) denotes the Banach 

algebra of bounded linear operators on Η. The elements of Β(Η) will be denoted by 

capital letters e.g. 𝐴, 𝐵 ∈ Β(Η), sometimes we may also use the letter 𝐻 for an 

element of Β(Η). For 𝑇 ∈ Β(Η) the numerical range is given as 𝑊(𝑇) =
{〈𝑇𝑥, 𝑥〉: ‖𝑥‖ = 1}. 

Several authors over the past few decades have used the numerical range for desired 

solutions in operator equations, by requiring that either 0 does not belong to the 

interior of the numerical range of the intertwining operator or does not belong to the 

closure of the numerical range of such operator. For example, M.R. Embry [2] in 

considering the equality of 𝐻 and 𝐾 in the equation 𝐴𝐻 = 𝐾𝐴 imposed the conditions 

that 0 ∉ 𝑊(𝐴) implies 𝐻 = 𝐾 provided 𝐻 and 𝐾 are commuting normal operators. 

Thus, means that the condition 0 ∉ 𝑊(𝐴) is not sufficient in itself. I.H. Sheth and J.M 

Khalagai [3] considered this same equation and removed the commutativity condition 

on 𝐻 and 𝐾 by showing that if 𝐴𝐻 = 𝐾𝐴 and 𝐴𝐾 = 𝐻𝐴, 𝐻 and 𝐾 normal with 0 ∉
𝑊(𝐴) then 𝐻 = 𝐾. 

J.P Williams [5] considered the equation 𝑆𝑇 = 𝑇∗𝑆 in which the desire was to look for 

conditions under which 𝑇 = 𝑇∗. Thus 𝑇 is self adjoint. More specifically he showed 

that if 𝑆𝑇 = 𝑇∗𝑆 with 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ (closure of 𝑊(𝑆)) and 𝑇 is hyponormal then 𝑇 = 𝑇∗. 

We note that in this case the condition that 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ is more stringent than 0 ∉
𝑊(𝑆). I.H. Sheth and J.M. Khalagai [4] also considered the equation 𝑇𝑆𝑇∗ = 𝑆 for 

unitary solutions where they first proved the following results. If 𝑇𝑆𝑇∗ = 𝑆 with 𝑇 

left invertible then 𝑇 is invertible provided 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ or 0 ∉ 𝑊(𝑅𝑒𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ or 0 ∉

𝑊(𝐼𝑚𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

In this paper we continue with this study of looking into operator equation with the 

aim of trying to relax the condition 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ to 0 ∉ 𝑊(𝑆). 

 

Notations, definitions and terminologies 

We note that as indicated in the abstract Η denotes a complex Hilbert space and Β(Η) 

denotes Banach algebra of all bounded linear operators on Η. For 𝐴 ∈ Β(Η) the 

numerical range 𝑊(𝐴) = {〈𝐴𝑥, 𝑥〉: ‖𝑥‖ = 1} its closure is denoted by 𝑊(𝐴)̅̅ ̅̅ ̅̅ ̅̅  while the 

spectrum of 𝐴s defined and denoted as 𝜎(𝐴) = {𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}

https://www.mathematicaljournal.com/
https://www.doi.org/10.22271/math.2025.v6.i2b.233


 

~220~ 

Journal of Mathematical Problems, Equations and Statistics  https://www.mathematicaljournal.com 
 

where ℂ denotes the complex number field. The point 

spectrum of 𝐴 is given by 𝜎𝑝(𝐴) = {𝜆 ∈ ℂ: 𝐴𝑥 = 𝜆𝑥}. 

Thus 𝜎𝑝(𝐴) ⊆  𝜎(𝐴) ⊆ 𝑊(𝐴).̅̅ ̅̅ ̅̅ ̅̅   

The commutator of two operators 𝐴 and 𝐵 is given by 
[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. 

 

An operator 𝑨 ∈ 𝚩(𝚮) is said to be; 

• Self adjoint if 𝐴 = 𝐴∗ where 𝐴∗ denotes the adjoint 

of 𝐴. 

• Isometric if 𝐴∗𝐴 = 𝐼 

• Co-Isometric if 𝐴𝐴∗ = 𝐼 

• Unitary if 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼 

• Normal operator if [𝐴, 𝐴∗]  
• Compact if for any bounded sequence (𝑥𝑛) in Η the 

sequence (𝐴𝑥𝑛) contains a convergent subsequence. 

• Hyponormal if 𝐴∗𝐴 ≥ 𝐴𝐴∗ 

• M-hyponormal if (𝐴 − 𝜆)(𝐴 − 𝜆) ∗ ≤ 𝑀(𝐴 −
𝜆) ∗(𝐴 − 𝜆) for 𝜆 ∈ ℂ and 𝑀 positive number  

• W-hyponormal if the inequality |𝐴̃| ≥ |𝐴| ≥ |𝐴̃∗| 
holds 

• P-hyponormal if inequality (𝐴∗𝐴)𝑝 ≥ (𝐴𝐴∗)𝑝 holds 

for 1 ≥ 𝑝 > 0. 
• Log-hyponormal if 𝐴 is invertible and 𝑙𝑜𝑔(𝐴∗𝐴) ≥

𝑙𝑜𝑔(𝐴𝐴∗). 
 

We have the following set inclusion of some classes of 

operators. 

1. {𝑈𝑛𝑖𝑡𝑎𝑟𝑦} ⊆ {𝐼𝑠𝑜𝑚𝑒𝑡𝑟𝑦} 

2. {𝑈𝑛𝑖𝑡𝑎𝑟𝑦} ⊆ {𝐶𝑜 − 𝑠𝑜𝑚𝑒𝑡𝑟𝑦} 

3. {𝑆𝑒𝑙𝑓 − 𝑎𝑑𝑗𝑜𝑖𝑛𝑡} ⊆ {𝑁𝑜𝑟𝑚𝑎𝑙} ⊆
{𝐻𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑀 − ℎ𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} 

4. {𝐻𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑃 − ℎ𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆
{𝑤 − ℎ𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} 

5. {𝐻𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑙𝑜𝑔 − ℎ𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆
{𝑤 − ℎ𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} 

 

Main results  

Theorem 3.1  

Let 𝑇, 𝑆 ∈ Β(Η) satisfy the equation 𝑇𝑆𝑇∗ = 𝑆 − (1) 

where 0 ∉ 𝑊(𝑆) and 𝑇 left invertible. Then 𝑇 is 

invertible. 

 

Proof 

Let 𝑇𝑙 be the left inverse of 𝑇. Then 𝑇𝑆𝑇∗ = 𝑆 implies 

𝑇𝑙𝑇𝑆𝑇∗ = 𝑇𝑙𝑆 i.e. 𝑆𝑇∗ = 𝑇𝑙𝑇 using (1) we have 𝑇𝑇𝑙𝑆 =
𝑆 i.e. (𝑇𝑇𝑙 − 𝐼)𝑆 = 0. Since 0 ∉ 𝑊(𝑆) it follows that 𝑆 

has dense range thus we have that 𝑇𝑇𝑙 − 𝐼 = 0 i.e. 

𝑇𝑇𝑙 = 𝐼 = 𝑇𝑙𝑇  

 

Hence 𝑇 is invertible. 

 

Remark 3.2 

1. It follows easily that in equation (1) above if 𝑇∗ is 

right invertible then 𝑇∗ is invertible and hence 𝑇 is 

invertible  

2. The following corollary is immediate. Thus, we 

have 

 

Corollary 3.3 

Let 𝑇, 𝑆 ∈ Β(Η) satisfy equation (1) above with 0 ∉
𝑊(𝑆). Then we have that. 

1. 𝑇 is unitary if it is isometric 

2. 𝑇 is unitary if 𝑇∗ is a coisometry 

 

Proof  

1. 𝑇 is isometric implying it is left invertible. Hence 

result follows from theorem 3.1 above. 

2. 𝑇∗ is coisometry implies it is right invertible from 

remark above and hence it is invertible. Thus, the 

result follows from theorem 3.1 above. 

 

Corollary 3.4 

Let 𝑇, 𝑆 ∈ Β(Η) satisfy equation (1) where 𝑇 is left 

invertible. Then 𝑇 is invertible under each of the 

following conditions  

1. 0 ∉ 𝑊(𝑅𝑒𝑆) 

2. 0 ∉ 𝑊(𝐼𝑚𝑆) 

 

Proof 

Given 𝑇𝑆𝑇∗ = 𝑆 taking adjoints gives, 𝑇𝑆∗𝑇∗ = 𝑆∗ i.e. 

𝑇𝑆𝑇∗ + 𝑇𝑆∗𝑇∗ = 𝑆 + 𝑆∗ i.e. 𝑇(𝑆 + 𝑆∗)𝑇∗ = 𝑆 + 𝑆∗ i.e. 

𝑇(𝑅𝑒𝑆)𝑇∗ = 𝑅𝑒𝑆 Similarly 𝑇𝑆𝑇∗ − 𝑇𝑆∗𝑇∗ = 𝑆 − 𝑆∗ 

i.e. 𝑇(𝑆 − 𝑆∗)𝑇∗ = 𝑆 − 𝑆∗ i.e. 𝑇(𝐼𝑚𝑆)𝑇∗ = 𝐼𝑚𝑆 

The proof of theorem 3.1 can now be traced to give 

results in both parts (i) and (ii) of corollary 3.4 above 

 

Corollary 3.5  

Let 𝑇 and 𝑆 be operators satisfying equation (1). If 𝑇 is 

an isometry then 𝑇 is unitary under each of the 

following conditions  

1. 0 ∉ 𝑊(𝑅𝑒𝑆) 

2. 0 ∉ 𝑊(𝐼𝑚𝑆) 

 

Proof 

We note that 𝑇 is an isometry implies 𝑇 is left 

invertible. In this case the proof follows from corollary 

3.4 

I.H Sheth and J.M Khalagai [3] proved the following 

result 

 

Theorem A [4] 

Let 𝑇 and 𝑆 be operators satisfying the equation 𝑇𝑆𝑇∗ =
𝑆 with 𝑇 left invertible. Then 𝑇 is invertible under any 

of the following conditions 

1. 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ 

2. 0 ∉ 𝑊(𝑅𝑒𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

3. 0 ∉ 𝑊(𝐼𝑚𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

Remark 3.6 

We note that it is clear that theorem 3.1 and corollary 

3.4 together constitute an improvement of theorem (A) 

above in the sense that we have removed closure on the 

numerical range wherever it appears. Thus, we have 

relaxed the conditions 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ or 0 ∉ 𝑊(𝑅𝑒𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ or 0 ∉

𝑊(𝐼𝑚𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ to those of 0 ∉ 𝑊(𝑆) or 0 ∉ 𝑊(𝑅𝑒𝑆) or 0 ∉
𝑊(𝐼𝑚𝑆) respectively. 
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We now bring into our discussions the following 

equation which was considered by J.P. Williams [5] 

which is as follows 𝑆𝑇 = 𝑇∗𝑆 for 𝑇, 𝑆 ∈ Β(Η) 

Specifically, he proved the following result. 

 

Theorem (B) [5] 

Let 𝑇, 𝑆 ∈ Β(Η) satisfy the equation 𝑆𝑇 = 𝑇∗𝑆 with 

𝑇 hyponormal and 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅. Then 𝑇 is self adjoint. 

We require the following theorems in our further 

discussions  

 

Theorem (C) [1] Putnam Fuglede property  

Let 𝑇, 𝑆 ∈ Β(Η) satisfy the equation 𝑇𝑋 = 𝑋𝑆 then we 

have 𝑇∗𝑋 = 𝑋𝑆.∗ Also M.R Embry proved the 

following result. 

 

Theorem (D) [2]  

Let 𝐴 and 𝐸 be operators such that 𝐴𝐸 = −𝐸𝐴 where 

either 𝐴 or 𝐸 is normal and 0 ∉ 𝑊(𝐴) then 𝐸 = 0 

In view of the two theorems above we have the 

following result. 

 

Theorem 3.7 

Let 𝑇, 𝑆 ∈ Β(Η) satisfy the equation 𝑆𝑇 = 𝑇∗𝑆 with 0 ∉
𝑊(𝑆) where 𝑇 and 𝑇∗ satisfy Putnam Fuglede property. 

Then 𝑇 is self adjoint. 

 

Proof  

Now 𝑆𝑇 = 𝑇∗𝑆 implies 𝑆𝑇∗ = 𝑇𝑆 i.e. 𝑆(𝑇 − 𝑇∗) =
(𝑇∗ − 𝑇)𝑆 i.e. 𝑆(𝑇 − 𝑇∗) = −(𝑇 − 𝑇∗)𝑆. We now show 

that 𝑇 − 𝑇∗ is normal indeed let 𝐿 = 𝑇 − 𝑇∗. Then we 

have 𝐿∗ = 𝑇∗ − 𝑇 

𝐿𝐿∗ = (𝑇 − 𝑇∗)(𝑇∗ − 𝑇) = 𝑇𝑇∗ − 𝑇2 − 𝑇∗2 + 𝑇∗𝑇 (𝑖) 

Also 𝐿∗𝐿 = (𝑇∗ − 𝑇)(𝑇 − 𝑇∗) = 𝑇∗𝑇 − 𝑇∗2 − 𝑇2 +
𝑇𝑇∗ (𝑖𝑖) 

From (𝑖) and (𝑖𝑖) 𝐿𝐿∗ = 𝐿∗𝐿. Thus, 𝑇 − 𝑇∗ is normal. 

Since 0 ∉ 𝑊(𝑆) we have by theorem (D) above that 

𝑇 − 𝑇∗ = 0 ⟹ 𝑇 = 𝑇∗. Hence 𝑇 is self adjoint. 

 

Corollary 3.8 

Let 𝑇 and 𝑇∗ be operators satisfying Putnam Fuglede 

property and such that 𝑆𝑇 = 𝑇∗𝑆 with either 0 ∉
𝑊(𝑅𝑒𝑆) or 0 ∉ 𝑊(𝐼𝑚𝑆). Then 𝑇 is self adjoint. 

 

Proof  

𝑆𝑇 = 𝑇∗𝑆 implies 𝑆𝑇∗ = 𝑇𝑆 i.e. 𝑆𝑇 − 𝑆𝑇∗ = 𝑇∗𝑆 − 𝑇𝑆 

i.e. 𝑆(𝑇 − 𝑇∗) = (𝑇∗ − 𝑇)𝑆 (𝑖)  

Taking adjoints gives (𝑇∗ − 𝑇)𝑆∗ = 𝑆∗(𝑇 − 𝑇∗) (𝑖𝑖) 

Adding (𝑖) and (𝑖𝑖) gives 

(𝑆 + 𝑆∗)(𝑇 − 𝑇∗) = (𝑇∗ − 𝑇)(𝑆 + 𝑆∗)  

i.e. 𝑅𝑒𝑆(𝑇 − 𝑇∗) = (𝑇∗ − 𝑇)𝑅𝑒𝑆 

i.e. 𝑅𝑒𝑆(𝑇 − 𝑇∗) = −(𝑇 − 𝑇∗)𝑅𝑒𝑆 

Similarly, 𝐼𝑚𝑆(𝑇 − 𝑇∗) = −(𝑇 − 𝑇∗)𝐼𝑚𝑆  

Now by theorem 3.7 above 𝑇 − 𝑇∗ = 0 i.e. 𝑇 = 𝑇∗. 

Hence 𝑇 is self adjoint. 

 

Remark 3.9 

We note that theorem 3.7 improves theorem (𝐵) of J.P 

Williams above in two aspects. In the first case it has 

relaxed the condition 0 ∉ 𝑊(𝑆)̅̅ ̅̅ ̅̅ ̅ to 0 ∉ 𝑊(𝑆). Secondly, 

we have dropped the condition that 𝑇 is hyponormal and 

replaced it with operators satisfying Putnam Fuglede 

property. This property includes quite a number of 

classes of operators which contain hyponormal 

operators as a subclass in fact the following corollary 

shades more light on this aspect. 

 

Corollary 3.10 

Let 𝑇, 𝑆 ∈ Β(Η) satisfy the equation 𝑆𝑇 = 𝑇∗𝑆 with 

either 0 ∉ 𝑊(𝑆) or 0 ∉ 𝑊(𝑅𝑒𝑆) or 0 ∉ 𝑊(𝐼𝑚𝑆). Then 

𝑇 is self adjoint provided 𝑇 and 𝑇∗ belong to each of the 

following classes of operators  

1. M-hyponormal  

2. W-hyponormal  

3. Log-hyponormal  

 

Proof  

The result follows from the fact that each of the classes 

above satisfies the Putnam Fuglede property. 

Finaly the authors are grateful to Professor Jairus 

Mutekhele Khalagai for his comments and suggestions 

during the preparation of this paper. 
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