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Abstract 

Lyons and colleagues proposed a model based on a second-order nonlinear differential equation to 

theoretically examine the steady-state of amperometric z behavior in polymer-modified electrode systems 

controlled by Michaelis-Menten (MM) kinetics. This study builds on previous work by extending the 

model to a Fractional Differential Equation (FDE) framework in order to better represent sequential 

dynamics. The impacts of different factors across multiple fractional orders 𝜇 are analyzed in order to 

derive approximated analytical solutions for the FDE system using the Homotopy Perturbation Method 

(HPM). The fractional-order technique allows for a smooth transition between fractional and integer-

order dynamics and enables more flexibility for simulating complex reaction-diffusion phenomena. 

These findings contribute to a deeper understanding of the interaction between reaction kinetics and 

diffusion processes, opening new possibilities for advanced applications in electrochemical systems. 

 

Keywords: Electro active polymer film, second-order ordinary differential equation, captor fractional 

derivative, homotopy perturbation method 

 

Introduction 

Electrode surfaces covered with electro active polymers films have become more popular in 

the domains of electro catalysis, chemical sensor technology, and energy storage applications. 

The development of polymer-based materials for electro catalysis and sensors, particularly 

those intended to function in batch amperometric z mode, has advanced significantly during 

the last ten years. A theoretical model for measuring the operationalz properties of metal 

Oxide-Nafion composite amperometric sensors is presented in [3]. By describing their kinetics 

using the Michaelis-Menten formalism, these sensors' heterogeneous redox catalytic process 

provides insight into the interactions between substrates and sensor elements. Reference [6] 

provides a theoretical analysis of the steady-state z amperometric response in systems with 

polymer-modified electrodes. This investigation most likely looks into how other elements 

affecting sensor performance interact with substrate diffusion within the polymer matrix. 

Together, these studies advance our understanding of how substrates interact with sensor 

elements, whether through redox catalysis or substrate diffusion within polymer matrices. 

Ultimately, they contribute to the development of more efficient and sensitive sensors for a 

wide range of analytical and energy-related applications. 

Fractional Calculus is an extension of the classical calculus of integer order. Fractional 

differential equations (FDEs) a cumulative advantage over integer-order differential equations 

(IDEs) in modeling complex real-world issues due to their unique features. Because of their 

memory effects, FDEs are more efficient than IDEs, which are by nature local. The application 

of fractional derivatives in various scientific and technical fields has led to their significant 

advancement in recent years. When modeling real-life events, FDEs are a useful tool for 

minimizing errors caused by overlooked parameters. See [14] noted in their investigation of 

electrochemistry and fractional calculus to improve our understanding of how chemical 

reactions at electrodes affect electric currents and concentration dynamics in electrochemical 

systems. In [26], integrates mathematical modeling with biochemical processes to clarify the 

dynamics of enzyme inhibitor reactions, demonstrating the effectiveness of fractional calculus 

in handling the complexities of biological systems. Reference [24] discusses sequential and non-

sequential Caputo fractional differential equations, their definitions, solution existence, and 

numerical methods. It emphasizes the advantages of sequential equations in real-world 

applications and suggests future research directions in fractional calculus. 

https://www.mathematicaljournal.com/
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The numerical solution of sequential case can also be 

determined, potentially producing solutions that converge to 

integer boundary value problems. See [27], provided the idea of 

fractional differentiation and integration with their basic 

properties. The semi-analytical HPM provides multiple 

advantages for addressing nonlinear case. It is straightforward 

and efficient, yielding analytical or semi-analytical solutions 

without requiring small perturbation parameters. HPM is 

versatile, applicable to various problems across disciplines 

like engineering and physics, and excels in handling strong 

nonlinearities and complex boundary conditions. The 

Fractional Homotopy Perturbation Method (FHPM) is an 

extension of the HPM designed to solve fractional derivatives, 

which involve derivatives of non-integer order. FHPM 

effectively captures the memory and hereditary properties of 

complex systems, and demonstrating good convergence and 

computational efficiency. The basic concept of FHPM for an 

FDE system has been explained in [27]. 

This paper discusses a mathematical model developed by 

Lyons and colleagues [6], which focuses on the formation of a 

substrate for complex with a immobilized catalyst complex on 

a surface. Initially, this model is formulated as a second-order 

nonlinear differential equation with boundary conditions. We 

modified it to a z Caputo-fractional differential equation z in 

the sequential case. This method is employed to obtain 

analytically approximation of the model involving fractional 

derivatives. The study explores into how substrate 

concentration is affected by various parameter values, 

including fractional orders. Specifically, it examines how 

variations in saturation and diffusion parameters affect the 

normalized current. The study further emphasizes that, as a 

specific case, the HPM solutions for the reaction/diffusion 

equation with fractional-order tend to solution for the integer-

order model. 

 

Nomenclature 

 
ℂ Catalyst. 

𝑆 Substrate. 

ℙ Product. 

ℂ
′
 An immobilized catalyst in its catalytically active state ℂ. 

𝐾 Partition coefficient 

𝐾𝑀 Michaelis-Menten Constant. 

𝑘𝐶  Catalytic constant. 

[𝑆ℂ] Substrate-Enzyme complex. 

[ℙℂ] Product-Enzyme complex. 

𝐷S Substrate’s diffusion coefficient. 

𝐷′S The Nernst diffusion layer. 

𝐿 Polymer layer of thickness. 

𝑠∞ Bulk concentration of substrate. 

𝜙 Thiele modulus. 

𝛼 Saturation parameter. 

 

The mathematical formulation of the problem 

Consider a thin, uniformly thick layer of electro catalytically 

active polymer film applied to a conductive z support surface 

to form a chemically z modified electrode. It is assumed that 

the catalytically active sites within the polymer film are 

uniformly distributed, thus ensuring a homogeneous reaction 

environment. It is further presumed that the layer maintains 

electrical conductivity and that the rate remains in affected by 

charge percolation through the film. The substrate is regarded 

as forming the immobilized catalyst with MM kinetics under 

the following two-step reaction  

 

S + ℂ 
𝐾𝑀
↔  [Sℂ]

𝑘𝐶
↔  ℙ + ℂ′𝑧        (1) 

zℂ′  
𝑘′𝐸
↔  ℂ           (2) 

 

Where ℂ and ℂ′ stand for the immobilized catalyst's 

catalytically active state. 𝐾𝑀 is denoted by MM constant. The 

non-dimensional parameters are used to express the 

reaction/diffusion equation as follows [4]. 

 

       (3) 

 

Where, 

 

 
 

With the boundary conditions z 

 

 
 

 
 

Where 𝑤 indicates dimensionless concentration substrate, and 

𝜒 =
𝑥

𝐿
 species the distance parameter. The third term is non-

linear concentration, often known as Michaelis-Menten 

kintics, while the first two terms indicate substrate diffusion 

inside the polymer matrix.  

The constant, which in the cases of planar, cylindrical, and 

spherical geometry are 𝑛 = 0, 𝑛 = 1, and 𝑛 = 2. Now that the 

normalized current can be written as follows: 

 

 
 

A fractional approach. 

In terms of the new generalized Caputo-sequential type non-

integer derivative sense, the previous model (3) − (6) is 

reformulated as follows: 

 

 
 

With the boundary conditions 

 

 
 

 
 

Where 𝐷𝜒
2𝜇

0
𝐶𝑆  represents Caputo-Sequential derivative with 

fractional order 2𝜇.  

 

Equilibrium and Stability Analysis 

The term "steady-state" in electro active polymer films 

denotes a state wherein the polymer film exhibits a stable and 

uniform electrochemical response. During this phase, 

processes like oxidation or reduction reactions within the 

polymer film reach equilibrium, leading to consistent values 

of normalized current, diffusion, or saturation parameters that 

persist over time. 

https://www.mathematicaljournal.com/
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The equilibrium point of our model is 

 

𝐸0 = (𝑤0, 𝑌) = (−
1

(𝛼 + 𝛾)
, 0) 

 

Theorem 1: z The equilibrium of the model (7) is 
locallyzasymptotically stable if 𝛼, 𝛾 > 0. Otherwise unstable. 

 

Proof. Consider the Jacobian matrix 𝐽(𝐸0) given by: 

 

𝐽(𝐸0) = (

0 1

−
(𝛼 + 𝛾)2

𝛾
−
𝑛

𝑥
) 

 

To determine its eigenvalues, solve the characteristic equation 

|𝐽(𝐸0) − 𝜆𝐼| = 0. 

 

𝜆2 +
𝑛

𝑥
𝜆 +

(𝛼 + 𝛾)2

𝛾
= 0 

 

Thus,  

 

𝜆 = −
𝑛

2𝑥
±
√
𝑛2

𝑥2
− 4

(𝛼+𝛾)2

𝛾

2
 

 

This shows that for 𝛼, 𝛾 > 0. Therefore, the Eigen values are 

negative real parts, indicating locally asymptotically stable.  

 

Model solution by using FHPM [27] 

Construct the homotopy 

 

(1 − 𝑝) ( 𝐷𝜒
2𝜇

0
𝐶𝑆 𝑤(𝜒)) + 𝑝 ( 𝐷𝜒

2𝜇
0
𝐶𝑆 𝑤(𝜒) +

𝑛

𝑥
𝐷𝜒
𝜇

0
𝐶𝑆 𝑤(𝜒) −

𝛾 𝑤(𝜒)

1 + 𝛼 𝑤(𝜒)
) = 0  

 

 𝐷𝜒
2𝜇

0
𝐶𝑆 𝑤(𝜒) = 𝑝 (

𝛾 𝑤(𝜒)

1+𝛼 𝑤(𝜒)
−
𝑛

𝑥
𝐷𝜒
𝜇

0
𝐶𝑆 𝑤(𝜒))    (15) 

 

Using the perturbation technique, 𝑤 can be expressed as the 

series in 𝑝 that follows: 

 

𝑤(𝜒) = 𝑤0(𝜒) + 𝑝𝑤1(𝜒) + 𝑝
2𝑤2(𝜒) +    (16) 

 

Substituting (16) into (15) and Equating powers of 𝑝. 

 

 𝑝0 ∶  𝐷𝜒
2𝜇

0
𝐶𝑆 𝑤0(𝜒) = 0 

 

𝑝1 ∶  𝐷𝜒
2𝜇

0
𝐶𝑆 𝑤1(𝜒) =

𝛾 𝑤0(𝜒)

1 + 𝛼 𝑤0(𝜒)
−
𝑛

𝑥
𝐷𝜒
𝜇

0
𝐶𝑆 𝑤0(𝜒) 

 

𝑝2 ∶  𝐷𝜒
2𝜇

0
𝐶𝑆 𝑤2(𝜒) =

𝛾 𝑤1(𝜒)

1 + 𝛼 𝑤1(𝜒)
−
𝑛

𝑥
𝐷𝜒
𝜇

0
𝐶𝑆 𝑤1(𝜒) 

 

Applying ℐ𝜇 which is inverse of 𝐷𝜇  into find 𝑤0(𝜒), 𝑤1(𝜒), …  

 𝑤0(𝜒) = 1 
 

 𝑤1(𝜒) =
𝛾

(1 + 𝛼)𝛤(2𝜇 + 1)
𝜒2𝜇 −

𝛾

(1 + 𝛼)𝛤(2𝜇 + 1)
 

 

Letting 𝑝 → 1 gives therefore, 

 

 𝑤(𝜒) = 1 −
𝛾

(1+𝛼)𝛤(2𝜇+1)
+

𝛾

(1+𝛼)𝛤(2𝜇+1)
𝜒2𝜇 −  (17) 

 

Graphical analysis 

 

  
A                B 

 

Fig 1: Dimensionless distance 𝜒 versus Dimensionless concentration of substrate 𝑤(𝜒) computed using(17), for various order 𝜇, and for some 

fixed values. 
 

In Figures.1 demonstrate the Dimensionless concentration of 

substrate 𝑤(𝜒) for certain values of parameter (𝛼, 𝛾) with 

different fractional order 𝜇. In Figures.2 leads to that as it 

(a) 𝛾 increases the concentration of substrate 𝑤(𝜒) on the 

electrode surface decrease, (b) 𝛼 increases the concentration 

of substrate 𝑤(𝜒) on the electrode surface increase. Due to a 

thin layer, the reaction kinetics accelerate more quickly than 

the substrate's diffusional transport. Consequently, the 

reaction is governed by diffusion, resulting in significant 

concentration polarization in the film. In Figures. 3 (a) and 

(b), the plots of dimensionless normalized current y, z versus 

diffusion parameter 𝛾 / saturation parameterz 𝛼 consistently 

show increasing trends in alignment with each other. In 

Figures.4 shows that the solution of the Caputo-sequential z 

fractional differential equation (17), yields the solution z of 

the corresponding integer-order derivative as special case 𝜇→
1. 

 

https://www.mathematicaljournal.com/


 

 

~206~ 

Journal of Mathematical Problems, Equations and Statistics  www.mathematicaljournal.com 
 

  
A                B 

 

Fig 2: Dimensionless distance 𝜒 versus Dimensionless concentration of substrate 𝑤(𝜒) computed using (17), (a) for different values of 𝛾 and 

for a specific value of 𝛼 with the order 𝜇 = 0.5. (b) for different values of saturation parameter 𝛼 and for a given value of 𝛾 with the order 𝜇 =
0.826 

 

  
A                B 

 

Fig 3: Dimensionless z normalized current 𝑦 versus dimensionless z saturation parameter 𝛼 and diffusion z parameter 𝛾 for several values of 

other z parameter 
 

 
 

Fig 4: According to the particular case 𝜇→ 1, the HPM solution (17), provides the solution (𝐴3). 

https://www.mathematicaljournal.com/
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This model offers a strong framework for applying the 

reaction-diffusion mechanism in biofuel z cells and 

bioreactors, and it is especially well-suited for amperometric 

sensors. The model also makes it easier to z understand the 

MM kinetics of enzymes in electrochemical systems and may 

be modified to improve the performance and design of 

biosensors for a range of uses, such as environmental 

monitoring and renewable energy. 

 

Conclusion 

The theoretical model of the electrode system of the steady-

state amperometric sensor, which exhibits Michaelis-Menten 

kinetics, was developed using a second-order non-linear 

differential equation and than expanded to the Caputo-

Sequential fractional differential equation. The non-linear 

reaction/diffusion equation investigated with approximative 

analytical solutions, specifically Homotopy Perturbation 

method, which is an efficient and effective method that can be 

utilized for fractional derivatives. The influence of various 

values of the parameter is discussed. The fractional-order 

model is more reliable than the that has been previously 

published integer-order model. In addition, we show that in a 

specific case, the caputo-sequential fractional equation leads 

to the solution of integer-order case. 
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Appendix A 

The HPM of solving second-order integer equation of 

reaction/diffusion equation (𝟑) 
 

Using Homotopy for the equation (𝟑) 
 

(1 − 𝑝) (
𝑑2𝑤

𝑑𝜒2
) + 𝑝(

𝑑2𝑤

𝑑𝜒2
+
𝑛

𝑥

𝑑𝑤

𝑑𝜒
−

𝛾 𝑤(𝜒)

1 + 𝛼 𝑤(𝜒)
) = 0 

 

 
𝑑2𝑤

𝑑𝜒2
+ 𝑝

𝑛

𝑥

𝑑𝑤

𝑑𝜒
− 𝑝

𝛾 𝑤(𝜒)

1+𝛼 𝑤(𝜒)
= 0      (A1) 

 

Using the perturbation technique 

 

𝑤(𝜒) = 𝑤0(𝜒) + 𝑝𝑤1(𝜒) + 𝑝
2𝑤2(𝜒) +   (A2) 
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Substituting(𝑨𝟏) into (𝑨𝟐) and equating the powers of 𝒑  

 

 𝑝0 : 
𝑑2𝑤0
𝑑𝜒2

= 0 

 

𝑝1 ∶  
𝑑2𝑤1
𝑑𝜒2

=
𝛾 𝑤0(𝜒)

1 + 𝛼 𝑤0(𝜒)
−
𝑛

𝑥

𝑑𝑤0
𝑑𝜒

 

 

𝑝2 ∶  
𝑑2𝑤2
𝑑𝜒2

=
𝛾 𝑤1(𝜒)

1 + 𝛼 𝑤1(𝜒)
−
𝑛

𝑥

𝑑𝑤1
𝑑𝜒

 

 ⋮ 
Integration with respect to 𝝌 with the boundary 

conditions (𝟒) and (𝟓) 
 

 𝑤0(𝜒) = 1 

 

𝑤1(𝜒) =
𝛾

2(1 + 𝛼)
𝜒2 −

𝛾

2(1 + 𝛼)
 

 

 Letting 𝑝 → 1 gives therefore, 

 

𝑤(𝜒) = 1 −
𝛾

2(1+𝛼)
+

𝛾

2(1+𝛼)
𝜒2 −     (A3) 

https://www.mathematicaljournal.com/

