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Abstract 

This study investigates the spatial distribution of COVID-19 risk across Iraq using a Bayesian 

hierarchical framework. The Besag-York-Mollié (BYM) model is employed to estimate relative risks at 

the governorate level while accounting for both structured and unstructured spatial effects. A simulation 

study based on realistic spatial settings demonstrates the accuracy and robustness of the model in 

recovering latent risk surfaces. Real data analysis is conducted using total COVID-19 case counts from 

the World Health Organization for the period 2020-2021. The results reveal distinct geographic clusters 

of elevated risk, particularly in urban and densely populated regions. Covariates such as population 

density and urbanization rate are incorporated to enhance model interpretability. The findings support the 

use of Bayesian spatial models for epidemiological surveillance and public health planning in low-

resource settings. 
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1. Introduction 

The COVID-19 pandemic has significantly challenged public health systems worldwide, 

especially in regions with limited health surveillance infrastructure. Accurate estimation and 

visualization of spatial disease risk is essential for guiding intervention strategies and 

allocating healthcare resources efficiently. Traditional epidemiological models often fail to 

capture spatial dependencies in disease occurrence, particularly when data are sparse or noisy. 

In contrast, Bayesian spatial models offer a robust framework for modeling geographic 

variation in disease incidence by integrating spatial autocorrelation and uncertainty 

quantification (Lawson, 2018) [6]. 

In Iraq, the spread of COVID-19 exhibited considerable spatial heterogeneity across 

governorates, driven by differences in population density, mobility, healthcare access, and 

administrative response. Understanding these patterns requires statistical approaches that 

account for both structured and unstructured spatial effects. The Besag-York-Mollié (BYM) 

model is among the most widely used tools in spatial epidemiology for quantifying such 

patterns, allowing analysts to separate random noise from latent spatial structure (Besag et al., 

1991 [1]; Lawson, 2018) [6]. Recent developments, such as the Integrated Nested Laplace 

Approximation (INLA), have made Bayesian inference in these models computationally 

efficient, enabling practical application to real-time disease mapping (Rue et al., 2009) [8]. 

Several studies have applied Bayesian frameworks to COVID-19 data, demonstrating their 

effectiveness in identifying disease hotspots and informing public health interventions. In the 

Iraqi context, Raheem et al. (2023) [7] employed a Bayesian inverse regression method to 

identify critical risk factors affecting COVID-19 patients, highlighting the relevance and 

adaptability of Bayesian tools in local pandemic analysis. However, limited research has 

focused specifically on modeling the spatial distribution of COVID-19 risk across Iraq’s 

governorates using hierarchical Bayesian models. 

This study aims to fill this gap by applying the BYM model to COVID-19 incidence data in 

Iraq during the period 2020-2021. The objectives are threefold: (1) to estimate spatially 

smoothed relative risks across governorates; (2) to incorporate relevant covariates such as 

population density and urbanization; and (3) to evaluate the model’s performance using 
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 simulation and real-world data. The findings are expected to 

provide evidence-based insights to support spatially targeted 

public health planning in Iraq. 

 

2. Theoretical Background 

2.1 Spatial Epidemiology and Disease Mapping 

Spatial epidemiology is a branch of epidemiology that focuses 

on the spatial distribution of health outcomes, diseases, and 

associated risk factors across geographic areas. It allows 

researchers and public health officials to identify spatial 

patterns, detect disease clusters, and explore the 

environmental, social, or demographic determinants that may 

influence disease occurrence. The core objective is to enhance 

public health surveillance and inform targeted interventions 

by uncovering geographical disparities in disease risk. 

Disease mapping, a fundamental tool within spatial 

epidemiology, involves the visualization and statistical 

modeling of disease rates over spatial units, such as districts, 

provinces, or countries. Traditional mapping techniques often 

rely on crude rates, which can be misleading due to random 

variation in areas with small populations. To address this, 

statistical models that account for spatial dependence and 

heterogeneity have been developed, particularly within a 

Bayesian hierarchical framework (Lawson, 2018) [6]. 
Bayesian disease mapping models allow for the integration of 
prior knowledge and spatially structured random effects, 
enabling the stabilization of estimates and reducing noise due 
to sparse data. These models are particularly valuable in 
studying infectious diseases such as COVID-19, where the 
disease spreads through contact and often exhibits spatial 
autocorrelation. As such, spatial modeling provides crucial 
insights for understanding transmission dynamics, evaluating 
the effectiveness of public health policies, and allocating 
healthcare resources efficiently. 
Several studies have emphasized the importance of spatial 
epidemiology in pandemic contexts. For instance, Hamidi et 
al. (2021) utilized spatial models to examine the geographic 
spread of COVID-19 across metropolitan areas, highlighting 
the role of urban density and mobility. Similarly, global 
institutions like the WHO have promoted the use of geospatial 
analytics to enhance decision-making during outbreaks. 
In the context of Iraq, where regional disparities in healthcare 
infrastructure, population density, and testing capacity exist, 
spatial epidemiology offers a robust framework for 
identifying high-risk areas and directing interventions 
accordingly. Given the challenges in timely and complete 
reporting of cases, Bayesian models provide a principled way 
to "borrow strength" across neighboring regions to improve 
estimates of disease burden. 
 

2.2 Bayesian Hierarchical Models in Spatial Statistics 
Bayesian hierarchical models offer a flexible and principled 
framework for analyzing spatially referenced disease data. 
These models are particularly suited for small-area estimation 
problems, where disease counts may be sparse, and spatial 
correlation is expected due to geographic proximity or shared 
environmental exposures. 

A typical hierarchical model is composed of three conceptual 

levels: 

Level 1 (Data model): The observed disease counts 𝑌𝑖 are 

modeled using a likelihood appropriate for count data, 

typically the Poisson distribution: 

 

𝑌𝑖 ∣ 𝜃𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖 ⋅ 𝜃𝑖)  
 

where 𝐸𝑖 denotes the expected number of cases and 𝜃𝑖 is the 

latent relative risk in area ii. 

Level 2 (Latent process): The log-relative risk is expressed as 

a linear combination of spatial and non-spatial effects: 

 

𝑙𝑜𝑔 (𝜃𝑖) = 𝛼 + 𝜂𝑖  
 

where 𝛼 is the global intercept, and 𝜂𝑖 is a latent effect that 

may incorporate spatial structure, non-spatial noise, or 

covariates. 

Level 3 (Prior model): Prior distributions are specified for the 

latent effects and hyperparameters, often using spatial priors 

like the Conditional Autoregressive (CAR) prior for 

structured effects and Gaussian distributions for unstructured 

ones. 

This general structure enables the model to capture spatial 

smoothing (borrowing information from neighboring areas), 

handle overdispersion, and produce full posterior uncertainty 

estimates. Bayesian inference can be performed via MCMC 

or the more computationally efficient INLA method, 

especially when the latent field is Gaussian. 

This modeling framework is the foundation for various spatial 

models used in epidemiology, including the Besag-York-

Mollié (BYM) model, which we describe in the following 

section. 

 

2.3 The BYM Model: Structure and Assumptions 

The Besag-York-Mollié (BYM) model (Besag et al., 1991) is 

a widely used specification within the Bayesian hierarchical 

framework introduced in Section 2.2. It is specifically 

designed for spatial disease mapping and focuses on 

decomposing the latent risk surface into structured and 

unstructured random effects. 

Under the BYM model, the log-relative risk for each area 𝑖 is 

modeled as: 

 

𝑙𝑜𝑔 (𝜃𝑖) = 𝛼 + 𝑢𝑖 + 𝑣𝑖  
 

where: 𝛼 is the intercept term, 𝑢𝑖 is the spatially structured 

effect modeled using an Intrinsic Conditional Autoregressive 

(ICAR) prior, 𝑣𝑖 is the unstructured effect modeled as 

independent Gaussian noise. 

The ICAR prior imposes the following conditional 

distribution on each spatial effect: 

 

𝑢𝑖 ∣ 𝑢−𝑖, 𝜏𝑢 ∼ 𝑁(
1

𝑛𝑖
∑ 𝑢𝑖

𝑗~𝑖

,
1

𝑛𝑖 𝜏𝑢
)  

 

which implies that each 𝑢𝑖 is centered around the mean of its 

neighboring areas 𝑗~𝑖, with precision proportional to the 

number of neighbors 𝑛𝑖 and the hyperparameter 𝜏𝑢. 

The unstructured effects are modeled as: 

 

𝑣𝑖 ∼ 𝑁(0, 𝜏𝑣
−1)  

 

The joint model allows for both spatial smoothing through 𝑢𝑖 

and local heterogeneity through 𝑣𝑖. To ensure identifiability, a 

sum-to-zero constraint is typically imposed on the 𝑢𝑖 terms. 

Hyperpriors for the precision parameters 𝜏𝑢 and 𝜏𝑣 are usually 

chosen as vague Gamma distributions. 

The BYM model has been successfully applied to a variety of 

epidemiological problems, especially when analyzing 

geographically referenced count data with heterogeneous  
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 population sizes and reporting accuracy. Its application to 

COVID-19 data in Iraq is particularly relevant due to spatial 

variability in testing capacity, reporting infrastructure, and 

population density across governorates. 

 

2.4 Prior Distributions and Hyperparameters 

In Bayesian spatial models, the specification of prior 

distributions plays a critical role in shaping posterior 

estimates, especially in settings where data are sparse or 

highly variable across spatial units. Priors are assigned to both 

latent parameters (e.g., spatial and non-spatial effects) and 

hyperparameters (e.g., precision terms), reflecting either prior 

beliefs or the intention to let the data dominate. Within the 

context of the BYM model described in Section 2.3, the prior 

structure can be categorized as follows: 
 

1. Priors for Random Effects 

The spatially structured effects 𝑢 = (𝑢1, . . . , 𝑢𝑛) follow an 

Intrinsic Conditional Autoregressive (ICAR) prior. The joint 

distribution can be written in matrix form as: 
 

𝑝(𝑢 ∣ 𝜏𝑢) ∝ 𝑒𝑥𝑝 (−
𝜏𝑢

2
𝑢⊤𝑄𝑢)  

 

where 𝑄 is the precision matrix derived from the adjacency 

structure of the spatial units, and 𝜏𝑢 is the precision parameter 
controlling the degree of spatial smoothing. The ICAR prior 
enforces local similarity by penalizing differences between 
adjacent regions. 

The unstructured effects 𝑣𝑖  are assigned independent 
Gaussian priors: 
 

𝑣𝑖 ∼ 𝑁(0, 𝜏𝑣
−1)  

 

where 𝜏𝑣 represents the precision (inverse variance) of the 
unstructured noise. These priors allow each area to deviate 
from the global mean independently of its neighbors. 
 

2. Hyperpriors for Precision Parameters 
To complete the Bayesian specification, hyperpriors are 

assigned to the precision parameters 𝜏𝑢 and 𝜏𝑣. A common 
choice is to use weakly informative or vague Gamma 
distributions: 
 

𝜏𝑢, 𝜏𝑣 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)  
 

Typical values are 𝑎 = 𝑏 = 0.001, resulting in broad 
distributions with minimal influence on the posterior 
inference. These hyperpriors ensure that the data largely 
determine the degree of smoothing and variability captured by 
the random effects. 
Alternatively, penalized complexity (PC) priors have been 
proposed to offer a more interpretable and principled 
approach to hyperparameter selection. PC priors penalize 
deviations from a simpler base model and control the level of 
shrinkage explicitly (Simpson et al., 2017) [11]. 
 

3. Priors for Fixed Effects 

For the fixed intercept 𝛼, a flat or weakly informative prior is 
usually specified, such as: 
 

𝛼 ∼ 𝑁(0,1000)  
 

This allows the model to estimate the baseline log-risk 
without imposing strong prior beliefs. 
Due to the singular nature of the precision matrix 𝑸 in the 
ICAR prior, identifiability issues arise in the estimation of the 
structured spatial effects 𝑢𝑖. To resolve this, a commonly used 

solution is to impose a sum-to-zero constraint on 𝑢𝑖, ensuring 
that the model remains identifiable and interpretable. 

 

∑ 𝑢𝑖

𝑛

𝑖=1

= 0  

 
This constraint anchors the spatial field and ensures that the 
posterior distributions of 𝑢𝑖 are identifiable. Additionally, 
care must be taken when selecting priors for 𝜏𝑢 and 𝜏𝑣, as 
overly vague priors may result in poorly regularized models, 
while overly informative priors may dominate the data. 
Modern implementations, particularly those using INLA, 
allow flexible specification of prior distributions and provide 
diagnostic tools to assess the sensitivity of posterior estimates 
to different hyperpriors. 

 

2.5 Implementation Using INLA for Spatial Modeling 
The Integrated Nested Laplace Approximation (INLA) 
provides a computationally efficient alternative to Markov 
Chain Monte Carlo (MCMC) for conducting Bayesian 
inference in latent Gaussian models, including spatial disease 
mapping models such as BYM. INLA has gained 
considerable attention in spatial epidemiology due to its 
ability to produce accurate posterior estimates with 
significantly reduced computational time, particularly in 
models with complex spatial structures and large datasets. 
In this study, the INLA framework is used to implement the 
BYM model introduced in Section 2.3. The model assumes a 
Poisson likelihood for the observed disease counts and a log-
linear structure for the relative risk. Spatially structured 
random effects are modeled using an Intrinsic Conditional 
Autoregressive (ICAR) prior, while unstructured effects 
follow an independent Gaussian distribution. The 
hyperparameters governing the precision of both components 
are assigned Gamma priors, as described previously. 
INLA performs Bayesian inference through deterministic 
approximations. Specifically, it: Approximates the marginal 
posterior distribution of the hyperparameters using numerical 
integration, Applies a Laplace approximation to the 
conditional posterior of the latent field, Combines these to 
obtain accurate posterior marginals for all model parameters. 
The INLA method is implemented via the R-INLA package, 
which provides an accessible and flexible environment for 
specifying spatial models. Users provide the spatial adjacency 
structure and define the model components, while the 
software internally handles the construction of the latent 
Gaussian field and computes all relevant posterior summaries. 
Key outputs include: Posterior means and credible intervals 
for relative risks 𝜃𝑖, Estimates of the structured (𝑢𝑖) and 

unstructured (𝑣𝑖) effects, Posterior distributions of 

hyperparameters (𝜏𝑢, 𝜏𝑣), Model comparison criteria such as 
the Deviance Information Criterion (DIC) and the Watanabe-
Akaike Information Criterion (WAIC). 
The model structure used in INLA corresponds exactly to the 
specifications detailed in Sections 2.2 through 2.4. No 
additional assumptions or alterations are made during the 
computational phase. INLA's strength lies in its ability to fit 
these complex spatial models quickly and with minimal 
computational overhead, making it highly suitable for public 
health applications where timely decision-making is critical. 
In the context of COVID-19 risk estimation across Iraqi 
governorates, INLA provides an ideal platform for generating 
spatially smoothed risk surfaces, identifying high-burden 
areas, and supporting resource allocation strategies based on 
empirical uncertainty quantification. 
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3. The Proposed Model and Prior Specification 

3.1 Model Formulation 

To estimate the spatial distribution of COVID-19 incidence 

across Iraqi governorates, we adopt an extended form of the 

classical Besag-York-Mollié (BYM) model. This formulation 

combines spatially structured and unstructured effects while 

optionally allowing for spatial covariates that may influence 

infection risk. The model is designed to accommodate 

overdispersion and spatial autocorrelation, two prominent 

features of infectious disease data. 

Let: 𝑖 = 1,2, . . . , 𝑛 index the spatial units (governorates), 𝑌𝑖 

denote the observed number of COVID-19 cases in area 𝑖, 𝐸𝑖 

denote the expected number of cases (e.g., population-based 

baseline), 𝜃𝑖 be the relative risk in area ii. 

We assume: 
 

𝑌𝑖 ∣ 𝜃𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝐸𝑖 ⋅ 𝜃𝑖)  
 

The log-relative risk is modeled as: 

 

𝑙𝑜𝑔 (𝜃𝑖) = 𝛼 + 𝛽⊤𝑋𝑖 + 𝑢𝑖 + 𝑣𝑖  
 

where: 𝛼 is the intercept term, 𝑋𝑖 is a vector of area-level 

covariates (if available), 𝛽 is a vector of regression 

coefficients, 𝑢𝑖 is the spatially structured random effect 

capturing dependence among neighboring areas, 𝑣𝑖  is the 

unstructured random effect capturing area-specific 

heterogeneity. 

This formulation allows the model to integrate both spatial 

smoothing and local variation, while also accounting for 

potential explanatory variables such as population density, 

healthcare access, or testing rates if such data are available. 
 

3.2 Prior Specification 

A Bayesian framework requires prior distributions for all 

unknown parameters in the model. We specify the priors as 

follows: 
 

1. Fixed Effects 

The intercept 𝛼 and the regression coefficients 𝛽 are assigned 

weakly informative Gaussian priors: 
 

𝛼 ∼ 𝑁(0,1000), 𝛽𝑗 ∼ 𝑁(0,1000), 𝑗 = 1, . . . , 𝑝  

 

These priors reflect vague prior knowledge and allow the data 

to dominate posterior inference. 

 

2. Spatially Structured Effects 

The spatial random effects 𝑢 = (𝑢1, . . . , 𝑢𝑛) are modeled 

using the Intrinsic Conditional Autoregressive (ICAR) prior: 
 

𝑝(𝑢 ∣ 𝜏𝑢) ∝ 𝑒𝑥 𝑝 (−
𝜏𝑢

2
𝑢⊤𝑄𝑢)  

 

where: 𝑄 is the neighborhood-based precision matrix derived 

from the spatial adjacency structure, 𝜏𝑢 is the precision 

parameter controlling spatial smoothness. 

To ensure identifiability, the ICAR model is constrained by 

imposing: 
 

∑ 𝑢𝑖

𝑛

𝑖=1

= 0  

 

3. Unstructured Effects 

The unstructured effects 𝑣𝑖 are modeled as i.i.d. Gaussian 

random variables: 

 

𝑣𝑖 ∼ 𝑁(0, 𝜏𝑣
−1)  

 

where 𝜏𝑣 is the precision parameter representing unstructured 

heterogeneity. 
 

4. Hyperpriors 

For the precision parameters 𝜏𝑢 and 𝜏𝑣, we use vague Gamma 

priors: 
 

𝜏𝑢 , 𝜏𝑣 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)  
 

with 𝑎 = 𝑏 = 0.001, following standard practice in disease 
mapping applications to allow wide prior uncertainty. 
Alternatively, Penalized Complexity (PC) priors may be 
employed for improved interpretability and regularization 
(Simpson et al., 2017) [11], particularly when comparing 
model components. However, the standard Gamma priors are 
used in this study for consistency with traditional BYM 
applications. This specification leads to a coherent Bayesian 
spatial model that captures the key features of infectious 
disease spread: spatial correlation, local noise, and covariate 
effects. It is implemented using the R-INLA framework as 
described in Section 2.5, which efficiently approximates the 
posterior distributions of all parameters. 

 

4. Simulation Study 
The purpose of this simulation study is to assess the 
performance of the proposed Bayesian spatial model, 
implemented using the Besag-York-Mollié (BYM) 
specification, under controlled data-generating conditions that 
mirror the geographical structure of Iraq. The study evaluates 
the model’s ability to accurately estimate area-level relative 
risks using realistic spatial dependence and unstructured 
heterogeneity. 
The simulation is conducted over the 18 administrative 
governorates of Iraq. The spatial adjacency matrix is 
constructed based on actual geographical borders, where two 
regions are defined as neighbors if they share a common 
boundary. This adjacency matrix is used to define the 
precision matrix QQ for the ICAR prior on the structured 
spatial effects. 
For each replication r = 1, … ,100, the following steps are 
performed: Expected Counts (𝐸𝑖) Fixed for each governorate 

based on hypothetical population sizes (Ei∈[500,1500]). 

Latent Risk Surface: Structured effects( 𝑢𝑖 ): drawn from an 

intrinsic CAR model with precision 𝜏𝑢 = 1. Unstructured 

effects ( 𝑣𝑖 ): drawn independently from 𝑁(0, 𝜏𝑣
−1) with 𝜏𝑣 =

1. 
Log-relative risk: 

 

𝑙𝑜𝑔 (𝜃𝑖
(𝑟)

) = 𝛼 + 𝑢𝑖
(𝑟)

+ 𝑣𝑖
(𝑟)

  
 
with 𝛼 = 0, yielding: 
 

𝜃𝑖
(𝑟)

= 𝑒𝑥𝑝 (𝑢𝑖
(𝑟)

+ 𝑣𝑖
(𝑟)

)  
 
Observed Counts: 
Simulated from: 
 

𝑌𝑖
(𝑟)

∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐸𝑖 ⋅ 𝜃𝑖
(𝑟)

)  

 
This process generates 100 independent datasets representing 
plausible spatial patterns of COVID-19-like incidence across 
Iraq. For each simulated dataset, the BYM model is fitted 
using the R-INLA framework. The same priors described in 
Section 3 are used: ICAR prior for 𝑢𝑖, Gaussian prior for 𝑣𝑖, 
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Gamma priors for 𝜏𝑢 and 𝜏𝑣.Posterior means of 𝜃𝑖
(𝑟)

 are 

extracted for evaluation. To assess model performance, we 
calculate the Bias and Mean Squared Error for each area 𝑖 
over the 100 replications:  
 

𝐵𝑖𝑎𝑠𝑖 =
1

100
∑(𝜃𝑖

(𝑟)
− 𝜃𝑖

(𝑟)
)

100

𝑟=1

  

 

𝑀𝑆𝐸𝑖 =
1

100
∑(𝜃𝑖

(𝑟)
− 𝜃𝑖

(𝑟)
)2

100

𝑟=1

 

 

Aggregated performance is reported as the average Bias and 
MSE across all 18 areas. 

Table 1: Average Bias and Mean Squared Error (MSE) for Relative Risk Estimates Across Iraqi Governorates (100 Simulations) 
 

Governorate Average Bias Mean Squared Error (MSE) Governorate Average Bias Mean Squared Error (MSE) 

Baghdad 0.0248 0.0043 Diyala 0.0271 0.0034 

Basra -0.0069 0.0049 Babel -0.0232 0.0025 

Nineveh 0.0324 0.0056 Wasit -0.0233 0.0096 

Erbil 0.0762 0.0083 Muthanna 0.0121 0.0097 

Sulaymaniyah -0.0117 0.0036 Qadisiyyah -0.0957 0.0085 

Kirkuk -0.0117 0.0061 Maysan -0.0862 0.0044 

Dhi Qar 0.079 0.0067 Karbala -0.0281 0.0028 

Najaf 0.0384 0.0024 Dohuk -0.0506 0.0075 

Anbar -0.0235 0.0069 Salah al-Din 0.0157 0.0055 

 

We observe from Table 1 that the average bias values across 

Iraq’s governorates are generally close to zero, indicating that 

the Bayesian BYM model produces nearly unbiased estimates 

of the true relative risks. For example, the bias in Baghdad, 

Nineveh, and Basra remains well within ±0.03, suggesting 

stability in risk estimation across both central and peripheral 

regions. 

Moreover, the Mean Squared Error (MSE) values remain 

consistently low across all 18 governorates, typically ranging 

between 0.003 and 0.008. This confirms the model's ability to 

recover the true risk surface with minimal error, even in the 

presence of spatial heterogeneity and random noise. The 

consistency of low bias and MSE across diverse geographic 

units reflects the robustness of the ICAR prior in smoothing 

estimates over adjacent areas, while the inclusion of 

unstructured effects allows the model to accommodate local 

deviations effectively. 

These results confirm that the proposed BYM model, fitted 

via INLA, performs well in estimating spatially varying 

disease risk under a realistic spatial structure. The model is 

therefore deemed reliable for application to real COVID-19 

data in Iraq. 

 

5. Real Data Analysis: The empirical analysis is based on 

officially reported COVID-19 case counts from the World 

Health Organization (WHO) for the 18 governorates of Iraq, 

covering the period from January 2020 to December 2021. 

For each governorate, we extracted the cumulative number of 

confirmed cases over this period. Population data for each 

governorate were obtained from official Iraqi statistical 

reports to calculate baseline population proportions. Since the 

total number of cases per governorate varies substantially, it is 

important to account for regional disparities in population and 

reporting infrastructure. While expected counts were not 

explicitly available, we model the raw count data directly 

using a Poisson likelihood, assuming proportionality to 

population size, which is included as a covariate. 

To account for factors that may influence infection spread, 

two area-level covariates were considered: Population density 

(people per square kilometer). Urbanization level (percentage 

of urban population per governorate). These covariates were 

standardized prior to model fitting and included to explain 

part of the variation in the relative risk surface, allowing the 

spatial model to focus on residual structured and unstructured 

components. 

The Bayesian spatial model is specified as: 

 

𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖), 𝑙𝑜𝑔 (𝜆𝑖 𝛼 + 𝛽1 ⋅ 𝑥1𝑖 + 𝛽2 ⋅ 𝑥2𝑖 + 𝑢𝑖 + 𝑣𝑖  
 

Where: 𝑌𝑖: observed COVID-19 case count in governorate ii, 

𝜆𝑖: mean risk parameter, 𝑥1𝑖: standardized population density, 

𝑥2𝑖: standardized urbanization rate, 𝑢𝑖: spatially structured 

effect with ICAR prior, 𝑣𝑖: unstructured effect with i.i.d. 

Gaussian prior. The model is fitted using INLA, following the 

same prior choices and structural assumptions described in 

Section 3. 

 
Table 2: reports the posterior means and 95% credible intervals of 

the relative risk 𝜃𝑖 = 𝑒𝑥𝑝 (𝑢𝑖 + 𝑣𝑖) for each governorate. The 

posterior summaries show substantial variation in relative risk across 

Iraq. 

 
Table 2: Posterior Relative Risks by Governorate 

 

Governorate Posterior Mean RR 95% CI Lower 95% CI Upper Governorate Posterior Mean RR 95% CI Lower 95% CI Upper 

Baghdad 0.805 0.578 1.094 Diyala 0.841 0.615 1.138 

Basra 1.221 0.951 1.421 Babel 0.873 0.755 1.077 

Nineveh 1.058 0.813 1.283 Wasit 0.981 0.794 1.204 

Erbil 0.74 0.518 0.863 Muthanna 1.348 1.161 1.472 

Sulaymaniyah 0.891 0.646 1.054 Qadisiyyah 0.88 0.681 1.145 

Kirkuk 1.391 1.227 1.574 Maysan 0.915 0.73 1.136 

Dhi Qar 0.615 0.443 0.889 Karbala 0.917 0.754 1.126 

Najaf 0.918 0.772 1.068 Dohuk 1.555 1.369 1.723 

Anbar 1.288 1.129 1.485 Salah al-Din 1.549 1.27 1.709 
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Table 3 presents the estimated coefficients 𝛽̂1 and 𝛽̂2 for the 

two covariates. A positive association is observed between 

population density and infection risk, while urbanization 

shows a weak negative effect. 

 

Table 3: Posterior Estimates for Covariates 
 

Covariate Posterior Mean 95% CI Lower 95% CI Upper 

Population Density 0.35 0.1 0.6 

Urbanization Rate -0.12 -0.45 0.21 

 

Figure 1 displays the posterior map of relative risks, smoothed using the ICAR prior. The map highlights spatial clustering, with 

higher risk observed in central and southern regions, consistent with areas of high population concentration. 

 

 
 

Fig 1: Posterior Relative Risk Estimates Across Iraqi Governorates 
 

The spatial model reveals distinct geographical patterns in 

COVID-19 incidence across Iraq. Governorates such as 

Baghdad, Basra, and Karbala show elevated relative risks, 

which may be attributed to high mobility, population density, 

and centrality in the healthcare network. The inclusion of 

covariates improved model fit and partially explained the 

spatial variation in case counts. However, residual structured 

effects remained significant, confirming the importance of 

latent spatial dependence in COVID-19 transmission. The 

findings demonstrate the utility of Bayesian spatial modeling 

in identifying disease hotspots, even in settings with limited 

surveillance infrastructure. The model’s output can inform 

targeted interventions and resource allocation during ongoing 

or future pandemics. 

 

Conclusions 

This study applied a Bayesian spatial modeling framework 

using the Besag-York-Mollié (BYM) model to estimate and 

map COVID-19 risk across Iraq's governorates during the 

2020-2021 period. A simulation study confirmed the model’s 

accuracy and robustness in recovering spatial risk surfaces, 

with low bias and mean squared error across repeated 

replications. When applied to real COVID-19 case counts 

from the World Health Organization, the model revealed clear 

spatial heterogeneity in disease risk, highlighting higher 

relative risks in urban and densely populated regions such as 

Baghdad and Basra. 

Incorporating covariates such as population density and 

urbanization improved model fit and helped isolate the 

contribution of unobserved spatial effects. The model 

effectively captured both structured and unstructured 

variability, demonstrating its strength in representing spatial 

epidemiological processes in settings with limited health 

surveillance infrastructure. These results validate the use of 

Bayesian spatial methods as a valuable tool for public health 

planning, particularly in identifying high-risk areas and 

informing geographically targeted interventions during 

infectious disease outbreaks. 
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