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Abstract 
This paper will solve one of the fractional mathematical physics models, a one-dimensional time-
fractional differential equation, by utilizing the second-order quarter-sweep finite-difference scheme and 
the preconditioned accelerated over-relaxation method. The proposed numerical method offers an 
efficient solution to the time-fractional differential equation by applying the computational complexity 
reduction approach by the quarter-sweep technique. The finite-difference approximation equation will be 
formulated based on the Caputo’s time-fractional derivative and quarter-sweep central difference in 
space. The developed approximation equation generates a linear system on a large scale and has sparse 
coefficient in terms of the number of iterations and computation time. The quarter-sweep computes a 
quarter of the total mesh points using the preconditioned iterative method while maintaining the 
solution’s accuracy. A numerical example will demonstrate the efficiency of the proposed quarter-sweep 
preconditioned accelerated over-relaxation method against the half-sweep preconditioned accelerated 
over-relaxation, and the full-sweep preconditioned accelerated over-relaxation method. The numerical 
finding showed that the quarter sweep finite difference scheme and preconditioned accelerated over-
relaxation method can serve as an efficient numerical method to solve fractional differential equations. 
 
Keywords: Caputo’s fractional derivative, implicit finite-difference scheme, QSPAOR, TFDE  

 
Introduction 
The growing interest in the theory and applications of fractional calculus has become the 
motivation for many researchers in recent years. Fractional calculus has attracted attention of 
experts from all over the world. Various fractional operators have been introduced in the 
literature such as [3, 9-11, 27, 30, 31], and this encourages more extensive researches to be 
conducted. Solving fractional differential equations (FDEs) using numerical methods has been: 
seen as an ongoing research trend. 'The analytical s solutions of most FDEs are challenging 
compared to the ordinary (ODEs) and partial differential equations (PDEs) in general. 
Therefore, numerical solutions are: actively being found by proposing new numerical 
approximation techniques to solve the FDEs. Some notable numerical methods have been 
developed to solve the fractional partial derivatives problems [1, 2, 14, 19, 20, 29]. Besides that, [12] 
has presented several interesting MATLAB routines for solving FDEs. The author has 
provided many solution techniques for solving three identified FDE problems such as the 
standard FDEs, the multiorder systems of FDEs, and the multiterm FDEs One of the studies 
[13] presented several computational cost evaluations for the numerical solutions of FDEs from 
the point of view of computer science. Based on that work the computational complexities for 
the time-fractional, space-fractional, and space-time FDEs are known to be O(N2 M), O(NM2), 
and O(NM(M+N)). The authors have also compared the three mentioned computational costs 
against O(MN), which is the cost of finding solutions for the classical partial differential 
equations using finite-difference methods. Moreover, here, M the and N denote the number ofs 
spatial grid points and time: steps, respectively authors have mentioned that the preconditioner 
technique is a good alternative to accelerate the computational process in solving FDEs 
In our development of the numerical method to solve FDEs, we are interested in applying the 
second-order quarter-sweep finite-difference scheme with a preconditioning technique to solve 
the time-fractional FDE (TFDE). 'There are several finite difference scheme applications t to 
solve the TFDE [5, 7, 12,1 25, 26]. However, the investigation on the efficiency of the numerical 
method used to: solve the TFDE is quite limited. The quarter-Sweep finite- difference scheme 
has been a good computation complexity reduction approach, especially when large number of 
mesh points are considered [4, 22, 28]. 
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 The quarter-sweep is able to reduce the computational complexity of computing the solutions of a large linear system by 

computing a quarter of the total number of mesh points without offsetting the solutions' accuracy. Therefore, this paper 

investigates the efficiency of the quarter-sweep finite difference scheme with a preconditioning technique called PAOR [26] to 

solve the TFDE. The PAOR iterative method will be used to compute a quarter of mesh points after quarter-sweep 

implementation. The remaining mesh points will be estimated by averaging. This efficient numerical method is important to the 

physicists to aid their investigation on the time-fractional mathematical model, arising from the necessity to sharpen the concepts 

of equilibrium, stability states, and time evolution in the long-time limit [8, 17, 18]. 

Throughout this paper, we discretized TFDE using the unconditionally stable second-order quarter-sweep implicit finite-

difference (QSIFD) scheme. We used Caputo's fractional partial derivative to form the approximation equation. Usually, the 

finite-difference approximation equation's implementation leads to a tridiagonal matrix of the linear system due to its 

characteristics. The discretized finite-difference approximations also form a large and sparse matrix which is the best alternative 

to be solved using the iterative method. We have observed the successful iterative methods from many researchers. From many 

discussions and extensions made ins several categories of i iterative methods, we find that the preconditioned iterative methods 

have the unique properties to solve a linear system efficiently [15, 16, 23]. 

This paper’s main contribution is to present the efficiency of our proposed numerical method, which can be called the quarter-

sweep preconditioned accelerated over-relaxation (QSPAOR) iterative method for solving TFDEs. In this paper, the numerical 

method’s efficiency is evaluated based o the number of iterations and the computation time. The QSPAOR iterative method’s 

over-relaxation and full sweep preconditioned accelerated over-relaxation and the improvement in terms of the reduction of both 

the quarter-sweep finite difference approximation equation and the AOR iterative method’s convergence analysis are also 

provided. 

The general TFDE that we consider as the main problem to be solved can be written as 

 
𝜕𝛼𝑈(𝑥,𝑡)

𝜕𝛼𝑡
= 𝑝(𝑥)

𝜕𝛼𝑈(𝑥,𝑡)

𝜕𝑥2 + 𝑞(𝑥)
𝜕𝑈(𝑥,𝑡)

𝜕𝑥
+ 𝑟(𝑥)𝑈(𝑥, 𝑡),  (1) 

 

Where 𝑝(𝑥), 𝑞(𝑥) 𝑎𝑛𝑑 𝑟(𝑥) are known functions or coefficients; meanwhile, 𝛼 is a parameter that determines the degree of 

fractional order for the time derivative. For the formulation pf the finite-difference approximation with Caputo’s derivative, here 

are the important definitions that we use: 

 

Definition 1: the Rirmann-Liouville fractional integral operator 𝐽𝛼, of order 𝛼 is defined as 

 

𝐽𝛼𝑓(𝑥) =
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼𝑓(𝑡)𝑑𝑡,

𝑥

0
 𝛼 > 0, 𝑥 > 0  (2) 

 

Definition 2: the Caputo’s fractional partial derivative operator, 𝐷𝛼  of order 𝛼 is defined as 

 

𝐷𝛼𝑓(𝑥) =
1

𝛤(𝑚−𝛼)
∫

𝑓𝑚(𝑡)

(𝑥−𝑡)𝛼−𝑚+1 𝑑𝑡,
𝑥

0
 𝛼 > 0  (3) 

 

With 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁 𝑎𝑛𝑑 𝑥 > 0. 
 

Research methodology 

To solve the fractional differential problem shown in Eq.(1) we assume that the solutions exist and satisfy the Dirichlet boundary 

conditions. Therefore, using eq (2) the time fractional derivative term in eq(1) is discretized using 

 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 =
1

𝛤(𝑛−1)
∫

𝜕𝑢(𝑥−𝑠)

𝜕𝑡
(𝑡 − 𝑠)−𝛼𝑑𝑠,

∞

0
 𝑡 > 0, 0 < 𝛼 < 1.  (4) 

 

Using the approximation equation to Eq. (1) employing the finite-difference method and Caputo's fractional derivative, we 

develop a C++ code for the simulation of the approximate solutions. We have two examples of the TFDE to examine the iterative 

methods, i.e., the proposed QSPAOR, HSPAOR, and FSPAOR. The proposed numerical method's efficiency is examined using 

the number of iterations (K) and the computation time measured in seconds. The maximum absolute error (MAE) is also observed 

for accuracy checking. These criteria are compared by using three different order parameters 𝛼, i.e., 𝛼 = 0.25, 𝛼 = 0.50, and 𝛼 = 

0.75. The convergence tolerance, 𝜀 = 10−10 is set to terminate the iteration process. 

 

Approximation to the time fractional differential equation 

The first-order approximation to the Caputo's fractional derivative, which is derived from the discrete approximation to the time-

fractional derivative term shown in Eq. (4), can be written as 

 

𝐷𝑡
𝛼𝑈𝑖,𝑛 ≅ 𝜎𝛼,𝑘 ∑ 𝜔𝑗

(𝛼)
(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗),

𝑛
𝑗=1   (5) 

 

Where, from eq(5), we define two representations for the sake of simplicity as follows: 

𝜎𝛼,𝑘 =
1

𝛤(1−𝛼)(1−𝛼)𝑘𝛼  

 

And, 
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𝜔𝑗
(𝛼)

= 𝑗1−𝛼 − (𝑗 − 1)1−𝛼  

 

Then we use the common discretization by partitioning the solution domain of eq(1) uniformly, subjected by the Dirichlet 

boundary conditions. The numbers 𝑚 𝑎𝑛𝑑 𝑛 (𝑚, 𝑛 ∋ 𝑁∗) are defined so that the grid framework in space and time is fixed 

everywhere and has increments denoted as ℎ = ∆𝑥 =
𝑦−0

𝑚
 𝑎𝑛𝑑 𝑘 = ∆𝑡 =

𝑇

𝑛
, respectively. Based on the developed uniform grid 

network, the grid points in the space interval [0, 𝛾] are represented by 𝑥𝑖 = 𝑖ℎ, 𝑓𝑜𝑟 𝑖 = 0, 1, 2, . . . , 𝑚. Meanwhile the grid points in 

the time interval [0, T] are labelled as 𝑡𝑗 = 𝑗𝑘 𝑓𝑜𝑟 𝑗 = 0, 1, 2, . . . 𝑛. therefore, the values of the function U(x, t) at the grid points 

are expressed as 𝑈𝑖,𝑗 = 𝑈(𝑥𝑖 , 𝑡𝑗). 

The implementation of QSIFD discretization scheme for eq(5) produced the Caputo’s approximation to Eq(1) at the grid point 

(𝑥𝑖 , 𝑡𝑗) = (𝑖ℎ, 𝑗𝑘 ) which can be formulated as, 

 

𝜎𝛼,𝑘 ∑ 𝜔𝑗
(𝛼)

(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗) 
𝑛
𝑗=1   

 

=
𝑝𝑖

16ℎ2 (𝑈𝑖−4,𝑛 − 2𝑈𝑖,𝑛 + 𝑈𝑖+4,𝑛) +
𝑞𝑖

8ℎ
(𝑈𝑖+4,𝑛 − 𝑈𝑖−4,𝑛) + 𝑟𝑖𝑈𝑖,𝑛  (6) 

 

For i=4, 8, . . . , m-4. 

 

When the approximation in eq(6) is applied on the specified time level 𝑛 ≥ 2 eq(6) can be expressed as, 

 

𝜎𝛼,𝑘 ∑ 𝜔𝑗
(𝛼)

(𝑈𝑖,𝑛−𝑗+1 − 𝑈𝑖,𝑛−𝑗) 
𝑛
𝑗=1 = 𝑝𝑖

′𝑈𝑖−4,𝑛 + 𝑞𝑖
′𝑈𝑖,𝑛 + 𝑟𝑖

′𝑈𝑖+4,𝑛  (7) 

 

And the coefficients are represented by 

 

𝑝𝑖
′ =

𝑝𝑖

16ℎ2 −
𝑞𝑖

8ℎ
 𝑞𝑖

′ = 𝑟𝑖 −
𝑝𝑖

8ℎ2  , 𝑟𝑖
′ =  

𝑝𝑖

16ℎ2 +
𝑞𝑖

8ℎ
 .  

 

In addition to this for n=1 we have 

 

−𝑝𝑖
′𝑈𝑖−4,1 + 𝑞𝑖

∗𝑈𝑖,1 − 𝑟𝑖
′𝑈𝑖+4,1 = 𝑓𝑖,1 𝑖 = 4, 6, . . . , 𝑚 − 4  (8) 

 

Where 𝜔𝑗
(𝛼)

= 1, 𝑞𝑖
∗ = 𝜎𝛼,𝑘 − 𝑞𝑖

′, 𝑎𝑛𝑑 𝑓𝑖,1 = 𝜎𝛼,𝑘𝑈𝑖,1 

 

When a certain number of grid points is considered based on eq(8) a system of linear equations is obtained, which can be 

expressed in the form matrix as follows: 

 

𝐴𝑈 = 𝑓  

 

𝐴 =

[
 
 
 
 
 
 
 

𝑞4
∗ −𝑟4

′ 

−𝑝8
′  𝑞8

∗ −𝑟8
′ 

 −𝑝12
′  𝑞12

∗  −𝑟12
′  

.

.

.
 −𝑝𝑚−8

′  𝑞𝑚−8
∗  −𝑟𝑚−8

′

 −𝑝𝑚−4
′  𝑞𝑚−4

∗

 

]
 
 
 
 
 
 
 

((
𝑚

4
)−1)𝑥((

𝑚

4
)−1)

  

 

𝑈 = [𝑈4,1, 𝑈8,1, 𝑈12,1, . . . . , 𝑈𝑚−8,1, 𝑈𝑚−4,1]
𝑇
  

 

And 

 

𝑓 = [𝑈4,1 + 𝑝1
′  𝑈0,1 𝑈8,1, 𝑈12,1, . . . . , 𝑈𝑚−8,1, 𝑈𝑚−4,1 + 𝑝𝑚−4

′  𝑈𝑚,1]
𝑇
  

 

Analysis of stability 
In this section the stability analysis on the formulated Caputo’s finite difference approximation in eq(6) is considered based on 

von Neumann’s approach and the equivalence theorem [21, 24, 33]. 

 

Theorem 4.1. the fully IFd approximation to the solution of eq(1) with 0 < 𝛼 < 1 on the finite domain 0 ≤ 𝑥 ≤ 1 with zero 

boundary condition 𝑈(0, 𝑡) = 𝑈(𝑙, 𝑡) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 is consistent and unconditionally stable. 

 

Proof: Writing the solution of eq(1) in the form 𝑈𝑗
𝑚 = 𝜉𝑛𝑒𝑖𝜔𝑗ℎ , 𝑖 = √−1,𝜔 is real eq(1) becomes 
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𝜎𝛼,𝑘𝜉𝑛−1𝑒
𝑖𝜔𝑗ℎ − 𝜎𝛼,𝑘 ∑ 𝜔𝑗

(𝛼)
(𝑛

𝑗=2 𝜉𝑛−𝑗+1𝑒
𝑖𝜔𝑗ℎ − 𝜉𝑛−𝑗𝑒

𝑖𝜔𝑗ℎ)  

 

= −𝑝𝑖𝜉𝑛𝑒𝑖𝜔(𝑗−4)ℎ + (𝜎𝛼,𝑘 − 𝑞𝑖)𝜉𝑛𝑒𝑖𝜔𝑗ℎ − 𝑟𝑖𝜉𝑛𝑒𝑖𝜔(𝑗+4)ℎ  (10) 

 

By simplifying and reordering eq(10) we get 

 

𝜎𝛼,𝑘𝜉𝑛−1 − 𝜎𝛼,𝑘 ∑ 𝜔𝑗
(𝛼)

(𝑛
𝑗=2 𝜉𝑛−𝑗+1 − 𝜉𝑛−𝑗) = (((−𝑝𝑖 − 𝑟𝑖) cos(𝜔ℎ)) + (𝜎𝛼,𝑘 − 𝑞𝑖))  (11) 

 

Eventually from eq(11) we reduce to 

 

𝜉𝑛 =
𝜉𝑛−1+∑ 𝜔𝑗

(𝛼)
(𝑛

𝑗=2 𝜉𝑛−𝑗−𝜉𝑛−𝑗+1)

(1+
(𝑝𝑖+𝑟𝑖)

𝜎𝛼,𝑘
cos(𝜔ℎ)+

𝑞𝑖
𝜎𝛼,𝑘

)
  (12) 

 

Hence, from eq(12) it can be observed that 

 

(1 +
(𝑝𝑖+𝑟𝑖)

𝜎𝛼,𝑘
cos(𝜔ℎ) +

𝑞𝑖

𝜎𝛼,𝑘
) ≥ 1  (13) 

 

For all 𝛼, 𝑛, 𝜔, ℎ, 𝑎𝑛𝑑 𝑘, then we have the inequality 𝜉1 ≤ 𝜉0 and 

 

𝜉𝑛 ≤ 𝜉𝑛−1 + ∑ 𝜔𝑗
(𝛼)

(𝑛
𝑗=2 𝜉𝑛−𝑗 − 𝜉𝑛−𝑗+1), 𝑛 ≥ 2  (14) 

 

Based on eq(14) for n=2 we obtain 

 

𝜉2 ≤ 𝜉1 + 𝜔2
(𝛼)(𝜉0 − 𝜉1)  (15) 

Then by repeating the same process as in eq(15) we can get 

 

𝜉𝑗 ≤ 𝜉𝑗−1, 𝑗 = 1, 2, . . . , 𝑛 − 1  (16) 

 

From eq(16) we finally have 

 

𝜉𝑛 ≤ 𝜉𝑛−1 + ∑ 𝜔𝑗
(𝛼)

(𝑛
𝑗=2 𝜉𝑛−𝑗 − 𝜉𝑛−𝑗+1) ≤ 𝜉𝑛−1  (17) 

 

Since each term in the sum shown in eq(17) is negative, it implies that the inequalities in eq(16) & eq(17) can be generalized into 

 

𝜉𝑛 ≤ 𝜉𝑛−1 ≤ 𝜉𝑛−2 ≤. . . ≤ 𝜉1 ≤ 𝜉0   (18) 

 

Thus 𝜉𝑛 = |𝑈𝑗
𝑛| ≤ 𝜉0 = |𝑈𝑗

0| = |𝑓𝑗| which entails ‖𝑈𝑗
𝑛‖ ≤ ‖𝑓𝑗‖ and we have stability. It follows that the numerical solution of the 

approximation equation to eq(1) converges to the exact solution as ℎ, 𝑘 → 0. 
 

QSPAOR iterative method 

In this section, we discuss solving the tridiagonal linear system as in eq(9). To formulate the QSPAOR iterative method first 

convert the initial linear system into the preconditioned system in the form of 

 

𝐴∗𝑥 = 𝑓∗   (19) 

 

Referring to eq(19) the new coefficient matrix is obtained by 

 

𝐴∗ = 𝑃𝐴𝑃𝑇   (20) 

 

Then the right-hand side functional vector is 

 

𝑓∗ = 𝑃𝑓  (21) 

 

And lastly the approximate solutions are calculated using 

 

𝑈 = 𝑃𝑇𝑥 (22) 

Based on the transformation that we use in eq(20)-(22) the matrix P is defined as a preconditioning matrix that is, 

 

𝑃 = 𝐼 + 𝑆  (23) 

 

Where, 
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𝑆 =

[
 
 
 
 
 

0 −𝑟1
′ 0 0 0 0

0 0 −𝑟2
′ 0 0 0

0 0 0 −𝑟3
′ 0 0

0 0 0 0 0
0 0 0 0 0 −𝑟𝑚−1

′

0 0 0 0 0 0 ]
 
 
 
 
 

(𝑚−1)×𝑚−1)

  

 

And the matrix I is an identity matrix. 

Next, we let the coefficient matrix 𝐴∗ in eq (19) be given in the form of a sum as follows: 

 

𝐴∗ = 𝐷 − 𝐿 − 𝑉  (24) 

 

Based on the sum of their matrices in eq (24) we represent D, L, & V as the diagonal, the lower and the upper triangular matrices, 

respectively. Hence using the preconditioned system in eq(19) and matrices in eq(24) the proposed iterative method for solving 

TFDE, QSPAOR can be generally formulated as 

 

𝑥(𝑘+1) = (𝐷 − 𝜔𝐿)−1[𝛽𝑉 + (𝛽 − 𝜔)𝐷 + (1 − 𝛽)𝐷]𝑥𝑘 + 𝛽(𝐷 − 𝜔𝐿)−1𝑓∗  (25) 

 

Where 𝑥(𝑘+1) denotes the vector to be determined at the (k+1) th iteration. 

The operation of the QSPAOR method is executed as in Algorithm 1. 

 

Algorithm 1 (QSPAOR method) 

i) Initialize 𝑈 ← 0 𝑎𝑛𝑑 𝜀 ← 10−10. 

ii) For 𝑗 = 4, 8, . . . 𝑛 − 4 𝑎𝑛𝑑 𝑖 = 4, 8, . . . , 𝑚 − 4 calculate 

iii) 𝑥(𝑘+1) = (𝐷 − 𝜔𝐿)−1[𝛽𝑉 + (𝛽 − 𝜔)𝐷 + (1 − 𝛽)𝐷]𝑥𝑘 + 𝛽(𝐷 − 𝜔𝐿)−1𝑓∗ and then 𝑈𝑘+1 + 𝑃𝑇𝑥(𝑘+1). 
iv) Convergence criterion ‖𝑈𝑘+1 − 𝑈𝑘‖ ≤ 𝜀. If the process converged, go to step (iv) otherwise, repeat step (1). 

v) Display approximate solutions 

 

Convergence of AOR method 

As the QSPAOR iterative method has been formulated, in this section, we discuss the convergence of AOR method that we 

implement for the solution process to solve eq(1) therefore let us consider the AOR method [32]. 

 

𝑥(𝑘+1) = (𝐷 − 𝜔𝐿)−1[𝛽𝑉 + (𝛽 − 𝜔)𝐷 + (1 − 𝛽)𝐷]𝑥𝑘 + 𝛽(𝐷 − 𝜔𝐿)−1𝑓∗  (26) 

 

With n=0, 1, 2, . . . .  

 

Where 

 

𝐿𝜔,𝛽 = (𝐷 − 𝜔𝐿)−1[𝛽𝑉 + (𝛽 − 𝜔)𝐷 + (1 − 𝛽)𝐷] = 𝐷 − 𝛽(𝐷 − 𝜔𝐿)−1𝐴  (27) 

 

Theorem If the AOR method (16) converges (𝜌(𝐿𝜔,𝛽) < 1) for some 𝛽,𝜔 ≠ 0, then exactly one of the following statements 

holds: 

i) 𝜔 ∈ (0, 2)𝑎𝑛𝑑 𝛽 ∈ (−∞, 0) ∪ (0, +∞)  

ii) 𝜔 ∈∈ (−∞, 0) ∪ (2, +∞)𝑎𝑛𝑑𝛽 ∈ (
2𝜔

2−𝜔
, 0) ∪ (0, 2). 

 

Proof: It is known that the eigenvalues 𝜆𝑖  𝑜𝑓 𝐿𝜔,𝛽(𝛽, 𝜔 ≠ 0) are connected with the eigenvalues 𝜉𝑖  𝑜𝑓 𝐿𝜔,𝜔 ≡

𝐿𝜔(𝐿𝜔 𝑖𝑠 𝑡ℎ𝑒 𝑆𝑂𝑅 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥)𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝. 
 

𝜆𝑗 = (1 −
𝛽

𝜔
) +

𝛽

𝜔
𝜉𝑗 , 𝑗 = 2(2)𝑚 − 2  (28) 

 

From eq(28) we get 𝜉𝑗 = 1 −
𝜔

𝛽
+

𝜔

𝛽
𝜆𝑗 , 𝑗 = 2(2)𝑚 − 2. We also note that ∏  𝜉𝑗 = (1 − 𝜔)𝑛𝑚−2

𝑗=2,4,.. . Therefore ∏  (1 −
𝜔

𝛽
+𝑚−2

𝑗=2,4,..

𝜔

𝛽
𝜆𝑗) − (1 − 𝜔)𝑛 and since |𝜆𝑗| < 1, 𝑗 = 2(2)𝑚 − 2 from hypothesis we obtain 

 

|(1 − 𝜔)𝑛| = ∏ |1 −
𝜔

𝛽
+

𝜔

𝛽
𝜆𝑗|

𝑚−2
𝑗=2,4,.. ≤ ∏ (|1 −

𝜔

𝛽
| + |

𝜔

𝛽
|𝜆𝑗||)

𝑚−2
𝑗=2,4,..   

 

< ∏ (|1 −
𝜔

𝛽
| + |

𝜔

𝛽
|)𝑚−2

𝑗=2,4,.. = (|1 −
𝜔

𝛽
| + |

𝜔

𝛽
|)

𝑛

  (29) 

 

That is, 
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|1 − 𝜔| < |1 −
𝜔

𝛽
|
𝜔

𝛽
||   

 

Or equivalently, 

 

|𝛽(1 − 𝜔)| < |𝛽 − 𝜔| + |𝜔|  (31) 

 

It can be shown that eq(31) holds if and only if exactly one of the following statements holds: 

i) 𝜔 ∈ (0, 2)𝑎𝑛𝑑 𝛽 ∈ (−∞, 0) ∪ (0, +∞)  

ii) 𝜔 ∈∈ (−∞, 0) ∪ (2, +∞)𝑎𝑛𝑑𝛽 ∈ (
2𝜔

2−𝜔
, 0) ∪ (0, 2) 

 

And the proof is complete. 

 

Theorem If the AOR method with 𝜔 = 0 converges (𝜌(𝐿0,𝛽) < 1) then 0 < 𝛽 < 2. 

 

Proof: If 𝜔 = 0 then 𝐿0,𝛽 = (1 − 𝛽)𝐷 + 𝛽(𝐿 + 𝑈) = (1 − 𝛽)𝐷 + 𝛽𝐵 𝑖𝑓 𝜇𝑗 𝑗 = 2(2)𝑚 − 2 are the eigenvalues of B, then for the 

eigenvalues 𝜆𝑗 of 𝐿0,𝛽 we get. 

 

𝜆𝑗 = 1 − 𝛽 + 𝛽𝜇𝑗 , 𝑗 = 2(2)𝑚 − 2  (32) 

 

Which implies 

 

𝜇𝑗 =
1

𝛽
(𝛽 − 1 + 𝜆𝑗) , 𝑗 = 2(2)𝑚 − 2  (33) 

 

But since B = 0 we get 

 

∑ 𝜇𝑗
𝑚−2
𝑗−2,4,... = 0 = ∑ (𝛽 − 1 + 𝜆).𝑚−2

𝑗−2,4,...   (34) 

 

From eq(34) we have 

 

∑ 𝜆𝑗
𝑚−2
𝑗−2,4,... = (

𝑚

2
− 1) . (1 − 𝛽),  (35) 

 

And consequently, 

 

|(
𝑚

2
− 1) (1 − 𝛽)| = |∑ 𝜆𝑗

𝑚−2
𝑗−2,4,... | ≤ ∑ |𝜆𝑗 < 𝑛|𝑚−2

𝑗−2,4,...   (36) 

 

Since 

 

|𝜆𝑗| < 1, 𝑗 = 2(2)𝑚 − 2 from the hypothesis, |(
𝑚

2
− 1) (1 − 𝛽)| < 𝑛, 𝑜𝑟 0 < 𝛽 < 2. 

 

Examples 

For the numerical simulation, we consider two examples of the TFDE problems to evaluate the efficiency of the proposed 

QSPAOR against the previously developed iterative methods in our research, namely HSPAOR and FSPAOR. The three criteria, 

as mentioned in Sect. 2, are compared for each of the three different values of a, i.e., 𝛼 = 0.25, 𝛼 = 0.50, and 𝛼 = 0.75. The 

iteration cycle for the running program based on Algorithm 1 is limited by the tolerance 𝜀 = 10−10 We consider the following 

two TFDE examples, namely the time-fractional initial boundary value problems from [6]: 

 

Example 1 

 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 =
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 , 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 𝑦, 𝑡 > 0. (37) 

 

The boundary conditions that we implement are stated in fractional terms as follows: 

 

𝑢(0, 𝑡) =
2𝑘𝑡𝛼

𝛤(𝛼+1)
, 𝑢(𝑙, 𝑡) = 𝑙2 +

2𝑘𝑡𝛼

𝛤(𝛼+1)
 (38) 

 

And to initiate the approximate solutions we set the initial condition 

 

𝑢(𝑥, 0) = 𝑥2  (39)  
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Example 2 

 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝛤(1.2)𝑥𝛽 𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽 + 3𝑥2(2𝑥 − 1)𝑒−𝑡 (40) 

 
Table 1: Numerical results for Example 1 

 

M Method 
𝜶 = 𝟎. 𝟐𝟓 

Seconds MAE 
𝜶 = 𝟎. 𝟓𝟎 

Seconds MAE 
𝜶 = 𝟎. 𝟕𝟓 

Seconds MAE 
K K K 

128 

FSPAOR 1351 5.80 9.97e-05 694 0.92 9.86e-05 318 0.37 1.30e-04 

HSPAOR 409 2.47 9.97e-05 253 0.46 9.85e-05 93 0.12 1.30e-04 

QSPAOR 200 0.92 9.96e-05 124 0,24 9.84e-05 44 0.07 1.29e-04 

256 

FSPAOR 4192 24.95 9.97e-05 2694 7.52 9.90e-05 1307 2.92 1.30e-04 

HSPAOR 1605 11.00 9.97e-05 1027 4.47 9.89e-05 492 1.46 1.29e-04 

QSPAOR 784 4.19 9.95e-05 502 2.10 9.88e-05 241 0.87 1.28e-04 

512 

FSPAOR 15608 236.25 9.9e-05 10,085 62.59 9.90e-05 4947 29.56 1.32e-04 

HSPAOR 6029 114.76 9.97e-05 3887 32.61 9.90e-05 1900 15.05 1.31e-04 

QSPAOR 2950 43.02 9.95e-05 1540 15.21 9.89e-05 928 7.21 1.30e-04 

1024 

FSPAOR 54130 337.36 9.99e-05 33652 432.78 9.90e-05 16609 215.41 1.40e-04 

HSPAOR 21478 1613.83 9.97e-05 13387 212.95 9.88e-05 6498 113.40 1.40e-04 

QSPAOR 10640 898.67 9.95e-05 5531 103.96 9.87e-05 3479 53.67 1.39e-04 

2048 

FSPAOR 196523 14378.36 9.99e-05 121947 3026.56 9.90e-05 59500 1211.32 1.71e-04 

HSPAOR 77153 7189.71 9.97e-05 47933 1349.79 9.90e-05 23344 694.40 1.71e-04 

QSPAOR 38471 3078.90 9.96e-05 19711 601.76 9.88e-05 11740 321.85 1.70e-04 

 
Table 2 Numerical results for example 2 

 

M Method 
𝜶 = 𝟎. 𝟐𝟓 

Seconds MAE 
𝜶 = 𝟎. 𝟓𝟎 

Seconds MAE 
𝜶 = 𝟎. 𝟕𝟓 

Seconds MAE 
K K K 

128 

FSPAOR 406 3.32 1.95e-02 153 2.27 8.29e-05 142 1.62 1.37e-01 

HSPAOR 136 1.48 1.94e-02 77 1.30 8.30e-05 71 0.67 1.36e-01 

QSPAOR 49 0.72 1.94e-02 34 0.64 8.29e-05 19 0.33 1.35e-01 

256 

FSPAOR 1270 14.75 1.95e-02 591 8.21 8.29e-05 236 4.28 1.37e-01 

HSPAOR 618 7.21 1.94e-02 287 4.33 8.30e-05 111 2.33 1.36e-01 

QSPAOR 270 3.35 1.94e-02 141 2.03 8.29e-05 81 1.96 1.35e-01 

512 

FSPAOR 4841 91.72 1.95e-02 2330 53.97 8.29e-05 1064 31.84 1.37e-01 

HSPAOR 2365 44.07 1.95e-02 1139 23.24 8.30e-05 519 12.77 1.36e-01 

QSPAOR 1044 21.10 1.94e-02 592 11.87 8.29e-05 324 5.25 1.35e-01 

1024 

FSPAOR 16373 152.97 1.94e-02 8471 428.76 8.29e-05 4029 323.97 1.37e-01 

HSPAOR 8816 61.07 1.94e-02 4273 21334 8.30e-05 1987 148.63 1.36e-01 

QSPAOR 3908 29.58 1.94e-02 1895 106.90 8.29e-05 1219 51.76 1.35e-01 

2048 

FSPAOR 59608 853.87 1.95e-02 31048 1121.34 8.29e-05 14899 614.63 1.37e-01 

HSPAOR 29771 426.83 1.95e-02 15340 511.24 8.30e-05 7344 253.97 1.36e-01 

QSPAOR 13203 209.50 1.94e-02 6852 251.99 8.29e-05 4497 123.18 1.35e-01 

 

For the example of Eq. (40), we initiate the approximate solutions using the initial condition 𝑈(𝑥, 0) = 𝑥2 − 𝑥3and implement the 

zero Dirichlet conditions. Meanwhile, the exact solution to this problem is 𝑈(𝑥, 𝑡) = 𝑥2(1 − 𝑥)𝑒−𝑡. 

All-important numerical results from the implementation of QSPAOR, HSPAOR, and FSPAOR methods to solve the numerical 

examples in Eqs.(37) and (40) are recorded in Tables 1 and 2. For the consistency inspection, we run the numerical simulation by 

increasing the values of mesh sizes, that is, m = 128,256,512, 1024, and 2048. Based on the results tabulated in Tables 1 and 2, we 

found that QSPAOR required the least number of iterations and the shortest computation time to finish computing the two 

examples' solutions compared to the HSPAOR and FSPAOR. The numerical results are similar for all values of mesh sizes and 

parameter 𝛼. These results attribute the significant improvement in computing efficiency to the quarter-sweep technique, which 

computes a quarter of the total number of mesh points using PAOR instead of all mesh points in the solution domain. 

The results can be summarized as follows. For Example, l the number of iterations and computation time have declined by 80.25-

85.36% and 71.89-81.78%, respectively, if QSPAOR method is compared to the FSPAOR method. When QSPAOR is compared 

to HSPAOR, the number of iterations and the computation time have reduced by about 49.20-54.74% and 44.18-57.27%, 

respectively. For Example 2, QSPAOR has reduced the number of iterations and the computation time of FSPAOR by about 

72.13-84.16% and 67.16-80.90% respectively. When compared to HSPAOR, these improvements became 43.57-64.35% and 

38.57-57.28%, respectively. Overall, the accuracy of the three numerical methods, i.e., QSPAOR, HSPAOR, and FSPAOR, is 

comparable. 

 

Concluding Remark 
This paper solved a one-dimensional TFDE by applying the quarter-sweep finite-difference scheme and the PAOR iterative 
method. Using the quarter-sweep technique and PAOR iterative method, the computational complexity of computing the solutions 
of the TFDE has been successfully reduced. The quarter-sweep calculated only a quarter of the total mesh points by using PAOR 
while averaging the remaining mesh points, and the result is promising. The numerical experiments demonstrated the efficiency of 
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 the pro- posed QSPAOR method, in which the number of iterations and computation time have been reduced significantly, 

compared to the HSPAOR and FSPAOR methods. In addition to that, the accuracy of the three tested methods is almost identical. 
The study found that the computational complexity reduction by the quarter-sweep and the PAOR method can be an efficient 
numerical method to solve TFDE. 
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