Abstract
Many techniques have been employed for the development of an optimum corner detection algorithm. Each effort is guided by the motivation to overcome the limitations in previous methodologies. The conventional techniques incorporate the use of linear time invariant filters. These filters recognize a corner as an abrupt change of grey scale pixel intensities. The techniques are well established and computationally efficient. Harris, SUSAN, Robert, Prewitt, canny, SOBOL, SIFT, FAST, SFAST are based on the concept of spatial differential filters utilizing local gradient. These filters process the data in a relatively short time and are computationally optimized, however, they are susceptible to noise. In this paper a new intuitionistic robust fuzzy matrix, corner-based detection method is proposed, namely Intuitionistic Robust Fuzzy Matrix Corner Detection (IRFMCD) and its performance is studied by using real images with error tolerance.

Keywords: Intuitionistic robust fuzzy matrix, computer vision, canny, sift, fast

1. Introduction
Corners in an image are contours generated because of sudden or abrupt change in any of the (multiple) characteristics at pixel level. These changes could be observed due to alteration in colour, texture, shade, or light absorption. These characteristics could further lead in estimating the orientation, size, depth, and surface features in an image. Corner detection has numerous applications in the field of robotics, medical image analysis, geographical science, pattern recognition, and military technology etc., it is often the case that these images embody high frequency noise or irrelevant data which inhibits the detection of continuous corner points, since corner itself is a composition of high frequency data. The noise generates false flags as they often mislead the algorithms for a corner.

Section 2 deals with the corner detection concepts and the various types of corner and detection methods along with their features belongs to section 3. Section 4 provides the features of the proposed IRFMCD procedure in the context of corner detection. Finally, section 5 presents the results of experimental study of IRFMCD along with the existing methods.

2. Corner Detection Techniques
Fuzzy Set theory is another technique that has been employed for corner detection. The method performs mathematical and logical reasoning based on approximations rather than crisp values. Therefore, the technique significantly reduces the complexity of problems where fixed values cannot be attained or predicted. Kim et al. A theoretical perception suggests that higher order fuzzy rules set would compensate for other limitations and effectively represent uncertainties. Unfortunately, the complexity of representation of model in fuzzy type-2 increases multi-fold.

The developed corner detection technique for noisy images is based on fuzzy logic. A 3x3 window mask was designed to take the grayscale values of neighborhood pixels from the input image. The grayscale values of the neighborhood pixels obtained from the mask were pre-processed prior to the fuzzy inference system.

3. Types of Corner Detection
3.1 HARRIS operator
Harris proposed a method to solve the problems of noisy response due to a binary window function, namely Harris detector by applying the Gaussian noisy filter is defined as,
C(x,y) = Σw[I(xi,yi) - I(xi+Δx, yi+ Δy)]²

where the image function I(.) is approximated by a Taylor expansion truncated to the first order terms. C(x,y), the autocorrelation matrix which captures the intensity structure of the local neighborhood. Finally, find the operator points as local maxima of the operator response by characterizing operator by Eigen values of C(x, y).

3.2 SUSAN operator

Smith and Brady entrenched a new approach to low level image processing, in particular, corner and operator detection and structure preserving noise reduction.

\[
\frac{dl}{dx}(x_0 + a(x_0)) - \frac{dl}{dx}(x_0 + b(x_0)) = 0
\]

The SUSAN detectors are based on the minimizing of the local image region, and the noise reduction method uses the region in the smoothing the neighborhood.

3.3 Robert operator

The calculation of the gradient magnitude of an image is obtained by the partial derivatives Gx and Gy at every pixel location. The simplest way to implement the first order partial derivative is by using the Roberts cross gradient operator is given,

\[
Gx = f(i,j) - f(i+1,j+1) \quad \text{and} \quad Gy = f(i+1,j) - f(i,j+1)
\]

The above partial derivatives can be implemented by approximating them to two 2x2 masks.

3.4 Prewitt operator

The Prewitt corner detector is a much better operator than Roberts’s operator. This operator having a 3 x 3 masks deals better with the effect of noise. An approach using the masks of size 3 x 3 is given below, the arrangement of pixels about the pixels [i,j].

3.5 Canny operator

Canny technique is a very important method to find corners by isolating noise from the image before finding the corners of the image, without affecting the features of the corners in the image and then applying the tendency to find the corners and the critical value for threshold. The algorithmic steps for canny corner detection technique are followed.

1. Convolve image f (i, j) with a Gaussian function to get smooth image.

\[
f(r,c), f(r,c)=f(r,c)*G(r,c,6)
\]

2. Apply the first difference gradient operator to compute corner strength, then the corner magnitude and direction are obtained as before.

3. Apply non-maximal or critical suppression of the gradient magnitude.

4. Apply threshold of the non-maximal suppression image.

3.6 Sobel Operator

The Sobel corner detector is very much like the Prewitt corner detector. The difference between both is that the weight of the central coefficient is 2 in the Sobel operator. The partial derivatives of the Sobel operator are calculated as.

\[
Gx = (a_6 +2a_5+ a_4) - (a_0+2a_1+ a_2) \quad \text{and} \quad Gy = (a_2 +2a_3+ a_4) - (a_0+2a_4+ a_6)
\]

3.7 SIFT

SIFT (Scale Invariant Feature Transform) corner detection is realized by extracting a distinctive invariant feature from image algorithm was proposed by Lowe (2004) [13]. For any object in an image, interesting points on the object can be extracted to provide a “feature description” of the object. This description, extracted from a training image, can then be used to identify the object when attempting to locate the object in a test image containing many other objects.

To perform reliable recognition, it is important that the features extracted from the training image be detectable even under changes in image scale, noise and illumination. Such points usually lie in high-contrast regions of the image, such as object edges. Another important characteristic of these features is that the relative positions between them in the original scene shouldn’t change from one image to another. They are rotation-invariant, which means, even if the image is rotated, one can find the same corners.

3.8 FAST

FAST (Features from Accelerated Segment Test) algorithm was proposed and extended by Rosten and Tom (2006, 2010). Several feature detectors have been established and many of them are good. But when looking for a real-time application point of view, they are not fast enough. The FAST method is based on the SUSAN corner detection. The center of a circular area is used to determine brighter and darker neighboring pixels.

These are labeled using a straightforward implementation of the segment test criterion for n and a convenient threshold. Second, for each location of the circle \(x^t \in \{1,2,3\ldots,16\}\), the pixel at that position relative to p, can have one of three states.

\[
S_{p,x} = \begin{cases}
\text{d}, & l_{p-x} \leq l_p - t \text{ (darker)} \\
\text{s}, & l_p - t < l_{p-x} < l_p + t \text{ (similar)} \\
\text{b}, & l_p + t \leq l_{p-x} \text{ (brighter)}
\end{cases}
\]

Let P be the set of all pixels in all training images. Choosing an x partitions P into three subsets, P₃, Pₛ, and Pᵦ, where \(p_x = \{p \in P: S_{p,x} = \text{b}\}\).

The FAST assumes that the closest edge to the expected edge position is the correct match. This can lead to many correspondence errors if the motion is large.

3.9 SFAST

SFAST (S estimator FAST) algorithm was proposed and extended by Ravi and Muthukrishnan (2016). Edges are the key points in the corners and curve extraction is the one of the most powerful tools in the edges. The edges are generated by curves based on the regression lines. Most of the methods to be applied generally use least square regression line and fit the curves. Outliers can affect the least square fit and thus give imperfect edges. FAST algorithm uses the least squares procedure.

The least square procedure is not robust; hence it gives imperfect edges and leads to improper curve extractions. The proposed method uses the robust estimator namely S-estimator in the place of least square in the FAST algorithm, namely, SFAST. Generally, most lines fit the regression lines randomly, but do not verify whether the line fit is good or not.
4. Intuitionistic robust fuzzy matrix corner detection (IRFMCD)

In this proposed method four inputs and one output is given to the Intuitionistic robust fuzzy matrix system with the help of aanny corner detection algorithm, called Intuitionistic robust fuzzy matrix Corner Detection (IRFMCD). The four inputs are the four pixels of the 3x3 masking window. For inputs and output, the triangular membership function is used. Two super fuzzy matrix sets are used for the input -Black & White and two super fuzzy matrices are used for the output- Corner&. Non-Corner. The IRFMCD was created to represent each variable’s intensities; these sets are associated to the linguistic variables “black” and “white” for input and “corner” and “non corner” for output. The adopted membership functions for the super fuzzy matrix sets associated to the input and output are triangular. The work of this section is concerned with the development of super fuzzy matrix rules-based algorithm for the detection of image corners. For applying robust fuzzy matrix on an image to detect the corners, image preprocessing is done. Robust fuzzy matrix image processing is the collection of all approaches that understand, represent, and process the images, their segments and features as super fuzzy matrix sets.

The IRFMCD method, which extracts the corners of the image from the contours of the corner detected image. The IRFMCD corner detector works as follows.

Algorithm

- Input image.
- Guassian Smoothing.
- Gradient in x & y.
- Non-maximum suppression.
- IRFMCD conversion until nth term.
- Hysteresis threshold (T) value.
- Fill small gaps in corner contours. When the gap forms a T=1.96 𝜎,¬¬¬－
Table 2: Number of true/false corners detected with time taken (With noise)

<table>
<thead>
<tr>
<th>Image</th>
<th>Type of Image</th>
<th>HARRIS</th>
<th>SUSAN</th>
<th>ROBERT</th>
<th>PREWITT</th>
<th>CANNY</th>
<th>SOBEL</th>
<th>SIFT</th>
<th>FAST</th>
<th>S-FAST</th>
<th>IRFMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>(0.614)</td>
<td>[0.621]</td>
<td>[0.521]</td>
<td>(0.513)</td>
<td>(0.428)</td>
<td>(0.323)</td>
<td>(0.311)</td>
<td>(0.346)</td>
<td>(0.301)</td>
<td>(0.225)</td>
<td></td>
</tr>
<tr>
<td>Gif</td>
<td>(0.634)</td>
<td>[0.631]</td>
<td>[0.561]</td>
<td>(0.523)</td>
<td>(0.408)</td>
<td>(0.333)</td>
<td>(0.321)</td>
<td>(0.314)</td>
<td>(0.300)</td>
<td>(0.222)</td>
<td></td>
</tr>
<tr>
<td>PNG</td>
<td>(0.621)</td>
<td>[0.620]</td>
<td>[0.540]</td>
<td>(0.503)</td>
<td>(0.400)</td>
<td>(0.313)</td>
<td>(0.310)</td>
<td>(0.300)</td>
<td>(0.235)</td>
<td>(0.217)</td>
<td></td>
</tr>
<tr>
<td>BMF</td>
<td>(0.624)</td>
<td>[0.621]</td>
<td>[0.567]</td>
<td>(0.513)</td>
<td>(0.411)</td>
<td>(0.303)</td>
<td>(0.311)</td>
<td>(0.304)</td>
<td>(0.260)</td>
<td>(0.222)</td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td>118</td>
<td>119</td>
<td>121</td>
<td>122</td>
<td>124</td>
<td>126</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>GIF</td>
<td>117</td>
<td>120</td>
<td>121</td>
<td>123</td>
<td>124</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>132</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>PNG</td>
<td>118</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>132</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>BMF</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>126</td>
<td>131</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bold-True corners, [.]- False corners, (.)- Processing time (in seconds)
<table>
<thead>
<tr>
<th>Image Type</th>
<th>JPEG</th>
<th>GIF</th>
<th>PNG</th>
<th>BMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameraman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leena Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1: Corner Detected under IRFMCD (With noise)

Note: Bold - True corners, [.] - False corners, (.) Processing time (in seconds)

- JPEG: [36] [34] [33] [31] [30] [29] [28] [26] [15] [14]
 - Processing time: (0.681) (0.621) (0.551) (0.513) (0.404) (0.323) (0.320) (0.310) (0.245) (0.220)
- GIF: [36] [34] [33] [31] [30] [29] [28] [26] [24] [23]
 - Processing time: (0.774) (0.667) (0.651) (0.573) (0.488) (0.473) (0.391) (0.380) (0.370) (0.360)
- PNG: [36] [33] [32] [31] [30] [29] [28] [27] [26] [25]
 - Processing time: (0.754) (0.667) (0.651) (0.563) (0.468) (0.453) (0.371) (0.360) (0.350) (0.340)
- BMF: [36] [33] [32] [31] [30] [29] [28] [27] [26] [25]
 - Processing time: (0.704) (0.653) (0.644) (0.553) (0.448) (0.433) (0.351) (0.351) (0.336) (0.331)

- JPEG: [36] [34] [33] [31] [30] [29] [28] [26] [15] [14]
 - Processing time: (0.674) (0.681) (0.583) (0.498) (0.48) (0.391) (0.382) (0.360) (0.360)
- GIF: [36] [33] [32] [31] [30] [29] [28] [27] [26] [25]
 - Processing time: (0.754) (0.667) (0.651) (0.563) (0.468) (0.453) (0.371) (0.360) (0.350) (0.340)
- PNG: [36] [33] [32] [31] [30] [29] [28] [27] [26] [25]
 - Processing time: (0.704) (0.653) (0.644) (0.553) (0.448) (0.433) (0.351) (0.351) (0.336) (0.331)
Conclusion
It is observed from table 1 and 2, the performance of the proposed IRFMCD is better than the other corner detection methods. It is noted that corner detection and curve extraction timings are considerably low in IRFMCD procedure since the proposed method works with 36 pixels. The above data Simulated in TLS MATLAB toll box. It is randomly generated data based on the sample size. It is also to fix the threshold values is 2 in the toolbox and add 2% of salt and pepper Gaussian noise in the image. Table 1 and 2 indicate that the proposed IRFMCD procedure detects a greater number of true corners and a smaller number of false corners when compared with the others existing models. Note that the actual number of corners are 71, 45, 130, 121 and 141 for the image’s shape, apple, cameraman, Lena, and house respectively. It is concluded that IRFMCD procedure outperforms Harris, SUSAN, Rober, Prewitt, Canny, SOBEL, SIFT, FAST and SFAST by considering the processing time, curve and edge extracted and number of true corners detected.

References