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Abstract 
In this paper we study a non-autonomous time-delayed COVID-19 epidemic model. By utilizing some 
differential inequalities, sufficient conditions are derived for the permanence of the model and we also 
obtain the existence and uniform asymptotic stability of almost periodic solutions for the addressed model 
by Lyapunov functional method. Finally numerical simulations are given to demonstrate our theoretical 
results. 
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Introduction 
Wuhan, China is the origin of COVID-19 and one of the Cities most affected by it. The Mayor 
of Wuhan stated at a press conference on January 31,2020 that Wuhan is urgently building 
Vulcan Mountain Hospital and Thunder Mountain Hospital patients will be officially admitted 
on February 3 and February 6 [5]. By 24:00 on February 6, 2020, a total of 31,161 confirmed 
cases, including 636 deaths, were reported in the Chinese mainland, 22,112 confirmed cases, 
including 618 deaths, were reported in Hubei province, and 11,618 confirmed cases, including 
478 deaths, and were reported in Wuhan city. The spread of COVID-19 and various 
interventions have had an incalculable negative impact on People’s daily lives and the normal 
functioning of society. Cities in China’s Hubei Province have issued varying degrees of 
closures and traffic restrictions [6]. In fact, there are many imminent questions about the spread 
of COVID-19. How many people will be infected tomorrow? When will the inflection point of 
the infection rate appear? How many people will be infected during the peak period? Can 
existing interventions effectively control the COVID-19? What mathematical models are 
available to help us answer these questions? 
The COVID-19 is a novel coronavirus that was only discovered in December 2019, so data on 
the outbreak is still insufficient, and medical means such as clinical trials are still in a difficult 
exploratory stage [15]. So far, epidemic data have been difficult to apply directly to existing 
mathematical models, and questions need to be addressed as to how effective the existing 
emergency response has been and how to invest medical resources more scientifically in the 
future and so on. Based on this, this article aims to study the gaps in this part. 
Several factors complicate the infection dynamics of COVID-19 and add challenges to the 
disease control. First, the origin of the infection is still uncertain, although it is widely 
speculated that wild animals such as bats, civets and minks are responsible for starting the 
epidemic [25]. Second, clinical evidence shows that the incubation period of this disease ranges 
from 2 to 14 days. During this period of time, infected individuals may not develop any 
symptoms and may not be aware of their infection, yet they are capable of transmitting the 
disease to other people [18]. Third, the virus is new and there are no antiviral drugs or vaccines 
currently available. Consequently, disease control heavily relies on prompt detection and 
isolation of symptomatic cases. A number of modeling studies have already been performed for 
the COVID-19 epidemic. In [22], Wu et al., proposed SEIR model to describe the transmission 

dynamics, and estimated that the basic reproductive number for COVID-19 was about 2.68. In 
[17] Read et al. reported a value of 3.1 for the basic reproductive number based on data fitting of 
a SEIR model, using an assumption of poisson-distributed daily time increments.
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In [20], Tang et al., proposed a deterministic compartmental model incorporating the clinical progression of the disease, the 

individual epidemiological status, and the intervention measures and estimated the reproductive number could be as high as 

6.47, and reported that the quarantine and isolation can effectively reduce the control reproduction number and the 

transmission risk. 

Several factors complicate the infection dynamics of COVID-19 and add challenges to the disease control. First, the origin of 

the infection is still uncertain, although it is widely speculated that wild animals such as bats, civets and minks are responsible 

for starting the epidemic [25]. Second, clinical evidence shows that the incubation period of this disease ranges from 2 to 14 

days. During this period of time, infected individuals may not develop any symptoms and may not be aware of their infection, 

yet they are capable of transmitting the disease to other people [18]. Third, the virus is new and there are no antiviral drugs or 

vaccines currently available. Consequently, disease control heavily relies on prompt detection and isolation of symptomatic 

cases. A number of modeling studies have already been performed for the COVID-19 epidemic. In [22], Wu et al., proposed 

SEIR model to describe the transmission dynamics, and estimated that the basic reproductive number for COVID-19 was 

about 2.68. In [17] Read et al. reported a value of 3.1 for the basic reproductive number based on data fitting of a SEIR model, 

using an assumption of Poisson-distributed daily time increments. In [20], Tang et al., proposed a deterministic compartmental 

model incorporating the clinical progression of the disease, the individual epidemiological status, and the intervention 

measures and estimated the reproductive number could be as high as 6.47, and reported that the quarantine and isolation can 

effectively reduce the control reproduction number and the transmission risk. 

In nature, the variation of the environment plays an important role in many biological dynamical systems. In particular, the 

effects of a periodically varying environment are important for evolutionary theory as the selective forces on systems in a 

fluctuating environment differ from those in a stable environment. Thus, the assumption of periodicity of the parameters in the 

system incorporates the periodicity of the environment. In real world phenomenon, the environment varies due to the factors 

such as seasonal effects of weather, food supplies, mating habits and harvesting. However, if the various constituent 

components of the temporally nonuniform environment is with incommensurable (nonintegral multiples) periods, then one has 

to consider the environment to be almost periodic, since there is no a priori reason to expect the existence of periodic 

solutions. For this reason, the assumption of almost periodicity is more realistic and more general when we consider the effects 

of the environmental factors. In fact, several different periodic models have been studied for example (see [8 − 0,12,14] and 

references therein). 

 

Mathematical Formulation of the Model 

We divide the total human population into five compartments: the susceptible S, the exposed E (individuals in this class are in 

the incubation period; they do not show symptoms but are still capable of infecting others), the infected I (individuals in this 

class have fully developed disease symptoms and can infect other people), the quarantined Q, the recovered R. 

Motivated by above mentioned works, we introduce the following model to describe the transmission dynamics of the 

COVID-19 epidemic. 

 
S′(𝑡) = 𝜋(𝑡) − 𝛼(𝑡)S(𝑡)E(𝑡) − [𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡)]S(𝑡)

E′(𝑡) = 𝛼(𝑡)S(𝑡)E(𝑡) − 𝜎(𝑡)E(𝑡 − 𝜏) − [n(𝑡) + 𝛿(𝑡)]E(𝑡)

Q′(𝑡) = 𝛽(𝑡)S(𝑡) + 𝜂(𝑡)E(𝑡) − [𝜌(𝑡) + 𝜇(𝑡) + 𝛿(𝑡)]Q(𝑡)

I′(𝑡) = 𝜎(𝑡)E(𝑡 − 𝜏) + 𝜌(𝑡)Q(𝑡) − [K(𝑡) + 𝜉(𝑡) + 𝛿(𝑡)]I(𝑡)

R′(𝑡) = 𝛾(𝑡)S(𝑡) + 𝜇(𝑡)Q(𝑡) + K(𝑡)I(𝑡) − 𝛿(𝑡)R(𝑡) }
 
 

 
 

⋯(𝑣19) 

 

The parameters of the model are described in Table 1 and they are assumed to be positive and 𝜏 is the latent delay of the 

disease(i.e., the time-delay effect applied to the infected people meaning that the exposed people do not immediately become 

infected people at any time). A schematic representation of the model (V19) is shown in the following Fig 1. 

 

 
 

Fig 1: Flow chart of V_19 
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Preliminaries 

In this section, we discuss the permanence of the system (V19) − (C19), and demonstrate how the disease will be permanent 

under some conditions. 

 
Table 1: Parameter description and estimates for COVID-19 

 

 
 

For biological reasons, the initial conditions are nonnegative continuous functions as 

 
S(𝜃) = 𝜑1(𝜃) > 0, E(𝜃) = 𝜑2(𝜃) > 0, Q(𝜃) = 𝜑3(𝜃) > 0
I(𝜃) = 𝜑4(𝜃) > 0, R(𝜃) = 𝜑5(𝜃) > 0, 𝜃 ∈ [−𝜏, 0)

}⋯ (𝐶19) 

 

Where 𝜑 = (𝜑1, 𝜑2, 𝜑3, 𝜑4, 𝜑5) ∈ 𝒞 such that 𝜑𝑖(𝜃) > 0, (𝑖 = 1,2,3,4,5) for all 𝜃 ∈ [−𝜏, 0) and 𝒞 denotes the Banach space 

𝒞([−𝜏, 0], ℝ5) of continuous functions mapping the interval [−𝜏, 0] into ℝ5 equipped with the norm ∥ 𝜑 ∥=
sup𝜃∈[−𝜏,0){|𝜑𝑖(𝜃)|: 𝑖 = 1,2,3,4,5}. Also assume that 𝜑𝑖(0) > 0 for 𝑖 = 1,2,3,4,5 

Throughout the paper we denote 𝑓𝑢 = sup𝑡∈ℝ+𝑓(𝑡) and 𝑓ℓ = inf𝑡∈ℝ+𝑓(𝑡) for an almost periodic function 𝑓(𝑡) defined on ℝ+. 

Further, we assume that (ℋ1) 𝜋(𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝛿(𝑡), 𝜂(𝑡), 𝜎(𝑡), 𝜌(𝑡), 𝜇(𝑡), 𝜅(𝑡), 𝜉(𝑡) are all bounded non negative almost 

periodic functions on ℝ+ such that. 

 

0 < 𝜋ℓ ≤ 𝜋(𝑡) ≤ 𝜋𝑢, 0 < 𝛼ℓ ≤ 𝛼(𝑡) ≤ 𝛼𝑢, 0 < 𝛽ℓ ≤ 𝛽(𝑡) ≤ 𝛽𝑢, 0 < 𝛾ℓ ≤ 𝛾(𝑡) ≤ 𝛾𝑢

0 < 𝛿ℓ ≤ 𝛿(𝑡) ≤ 𝛿𝑢, 0 < 𝜂ℓ ≤ 𝜂(𝑡) ≤ 𝜂𝑢, 0 < 𝜎ℓ ≤ 𝜎(𝑡) ≤ 𝜎𝑢, 0 < 𝜌ℓ ≤ 𝜌(𝑡) ≤ 𝜌𝑢

0 < 𝜇ℓ ≤ 𝜇(𝑡) ≤ 𝜇𝑢, 0 < 𝜅ℓ ≤ 𝜅(𝑡) ≤ 𝜅𝑢, 0 < 𝜉ℓ ≤ 𝜉(𝑡) ≤ 𝜉𝑢
 

 

Definition 3.1. Let 𝑢:ℝ → ℝ be a continuous in t. 𝑢(𝑡) is said to be almost periodic on 𝑅 if, for any 휀 > 0, the set 𝑇(𝑢, 휀) =
{𝜏: |𝑢(𝑡 + 𝜏) − 𝑢(𝑡)| < 휀 for all 𝑡 ∈ ℝ} is relatively dense, i.e., for any 휀 > 0, it is possible to find a real number 𝑙 = 𝑙(휀) > 0, 
for any interval with length 𝑙(휀), there exists a number 𝜏 = 𝜏(휀) in this interval such that |𝑢(𝑡 + 𝜏) − 𝑢(𝑡)| < 휀 for all 𝑡 ∈ ℝ. 

 

Definition 3.2. The system (V19) is said to be permanent if there are positive constants 𝑚𝑖 and 𝑀𝑖(𝑖 = 1,2,3,4,5) such that. 

 
𝑚1 ≤ liminf

𝑡→+∞
S(𝑡) ≤ limsup

𝑡→+∞
S(𝑡) ≤ 𝑀1, 𝑚2 ≤ liminf

𝑡→+∞
E(𝑡) ≤ limsup

𝑡→+∞
E(𝑡) ≤ 𝑀2

𝑚3 ≤ liminf
𝑡→+∞

Q(𝑡) ≤ limsup
𝑡→+∞

Q(𝑡) ≤ 𝑀3, 𝑚4 ≤ liminf
𝑡→+∞

I(𝑡) ≤ limsup
𝑡→+∞

I(𝑡) ≤ 𝑀4

𝑚5 ≤ liminf
𝑡→+∞

R(𝑡) ≤ limsup
𝑡→+∞

R(𝑡) ≤ 𝑀5

 

 

Hold for any solution (s(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) of (v19) with initial conditions (C19). Here 𝑚𝑖 and 𝑀𝑖(𝑖 = 1,2,3,4,5) are 

independent of initial conditions (C19) Lemma 3.3. Assume that (S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) is any solution of system (V19) 
with the initial conditions (C19), then S(𝑡) > 0, E(𝑡) > 0, Q(𝑡) > 0, I(𝑡) > 0, R(𝑡) > 0 for all 𝑡 ∈ ℝ+ 

Proof. since the right hand side of (V19) is completely continuous and locally Lipschitzian on 𝐶, the solution 

(S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) of (V19) with initial conditions (C19) exists, and is unique on [0, 𝑡0), for some 0 < 𝑡0 < +∞. From 

the first equation of (V19), we have. 

 

S′(𝑡) ≥ −(𝛽𝑢 + 𝛾𝑢 + 𝛿𝑢)S(𝑡)

⇒ S(𝑡) ≥ 𝜑1(0)exp{−(𝛽
𝑢 + 𝛾𝑢 + 𝛿𝑢)𝑡} > 0

 

 

From the second equation of (V19), we get 
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E′(𝑡) ≥ −(𝜎(𝑡) + 𝜂(𝑡) + 𝛿(𝑡))E(𝑡) 
 

⇒ E(𝑡) ≥ 𝜑2(0)exp{−(𝜎
𝑢 + 𝜂𝑢 + 𝛿𝑢)𝑡} > 0 

 

Similarly, other equations of (V19), we obtained 

 
Q(𝑡) = 𝜑3(0)exp{−(𝜌

𝑢 + 𝜇𝑢 + 𝛿𝑢)𝑡} > 0

I(𝑡) = 𝜑4(0)exp{−(𝜅
𝑢 + 𝜉𝑢 + 𝛿𝑢)𝑡} > 0

R(𝑡) = 𝜑3(0)exp{−𝛿
𝑢𝑡} > 0

 

 

This completes the proof 

Lemma 3.4. Let (S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) be any solution of (V19) with initial conditions (C19) and let N(𝑡) =
S(𝑡) + E(𝑡) + Q(𝑡) + I(𝑡) + R(𝑡) for 𝑡 ≥ 0. Then. 

 

limsup
𝑡→+∞

N(𝑡) ≤
𝜋𝑢

𝛿ℓ
 

 

Proof. From Lemma 3.3, S(𝑡) > 0, E(𝑡) > 0, Q(𝑡) > 0, I(𝑡) > 0, R(𝑡) > 0 for all 𝑡 ∈ [0, 𝑡0) where 𝑡0 ∈ ℝ
+. Thus for 

𝑡 ∈ [0, 𝑡0) and adding all equations of (V19), we get  

 
N′(𝑡) = 𝜋(𝑡) − 𝛿(𝑡)N(𝑡)

≤ 𝜋𝑢 − 𝛿ℓN(𝑡)
 

Which implies that 

 

limsup
𝑡→+∞

N(𝑡) ≤
𝜋𝑢

𝛿ℓ
 

 

That is (S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) is uniformly bounded on [0, 𝑡0). From [11], we have 𝑡0 = +∞. 
 

This completes the proof. 

 Lemma 3.5. Suppose (ℋ1) and (ℋ2) 𝜋
ℓ ≥ (𝛽𝑢 + 𝛾𝑢 + 𝜂𝑢 + 𝜎𝑢) (

𝜋𝑢

𝛿ℓ
) hold and let  

(S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) be any solution of (V19) with initial conditions (C19).  
Then there exist 𝑚𝑖 > 0, 𝑖 = 1,2,3,4,5 such that 

 
liminf
𝑡→+∞

S(𝑡) ≥ 𝑚1, liminf
𝑡→+∞

E(𝑡) ≥ 𝑚2, liminf
𝑡→+∞

𝑄(𝑡) ≥ 𝑚3

liminf
𝑡→+∞

I(𝑡) ≥ 𝑚4, liminf
𝑡→+∞

R(𝑡) ≥ 𝑚5
 

 

Proof. By Lemma 3.4, for any 휀 > 0, there is a large sufficiently 𝑡1 > 0 such that  

 

E(𝑡) ≤
𝜋𝑢

𝛿ℓ
+ 휀 

 

As 𝑡 ≥ 𝑡1. Thus, from the first equation of system (V19), when 𝑡 ≥ 𝑡1  

 

S′(𝑡) ≥ 𝜋(𝑡) − [𝛼(𝑡) (
𝜋𝑢

𝛿ℓ
+ 휀) + 𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡)] S(𝑡)

≥ 𝜋ℓ − [𝛼𝑢 (
𝜋𝑢

𝛿ℓ
+ 휀) + 𝛽𝑢 + 𝛾𝑢 + 𝛿𝑢] S(𝑡)

 

 

Which implies that  

liminf
𝑡→+∞

S(𝑡) ≥
𝜋ℓ

𝛼𝑢 (
𝜋𝑢

𝛿ℓ
+ 휀) + 𝛽𝑢 + 𝛾𝑢 + 𝛿𝑢

 

 

Since 휀 is arbitrarily small, it follows that  

 

liminf
𝑡→+∞

S(𝑡) ≥ 𝜋ℓ [𝛼𝑢 (
𝜋𝑢

𝛿ℓ
) + 𝛽𝑢 + 𝛾𝑢 + 𝛿𝑢]

−1

: = 𝑚1 

 

Next, letting P(𝑡) = S(𝑡) + E(𝑡) and adding first two equations of (V19),  
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We get 

 
P′(𝑡) = 𝜋(𝑡) − 𝜎(𝑡)E(𝑡 − 𝜏) − [𝛽(𝑡) + 𝛾(𝑡)]S(𝑡) − n(𝑡)E(𝑡) − 𝛿(𝑡)P(𝑡)

≥ 𝜋ℓ − 𝜎𝑢 (
𝜋𝑢

𝛿ℓ
+ 휀) − (𝛽𝑢 + 𝛾𝑢) (

𝜋𝑢

𝛿ℓ
+ 휀) − 𝜂𝑢 (

𝜋𝑢

𝛿ℓ
+ 휀) − 𝛿𝑢P(𝑡)

 

Which implies that 

 

liminf
𝑡→+∞

P(𝑡) ≥
1

𝛿𝑢
[𝜋ℓ − (𝜎𝑢 + 𝛽𝑢 + 𝛾𝑢 + 𝜂𝑢) (

𝜋𝑢

𝛿ℓ
+ 휀)] 

 

From the definition of 𝑃(𝑡), we have 

 

liminf
𝑡→+∞

E(𝑡) ≥
1

𝛿𝑢
[𝜋ℓ − (𝜎𝑢 + 𝛽𝑢 + 𝛾𝑢 + 𝜂𝑢) (

𝜋𝑢

𝛿ℓ
)] − 𝑚1: = 𝑚2 

 

Similarly, we can have 

 

liminf
𝑡→+∞

𝑄(𝑡) ≥
𝛽ℓ𝑚1 + 𝜂

ℓ𝑚2

𝜌𝑢 + 𝜇𝑢 + 𝛿𝑢
: = 𝑚3

liminf
𝑡→+∞

𝐼(𝑡) ≥
𝜎ℓ𝑚2 + 𝜌

ℓ𝑚3

𝜅𝑢 + 𝜉𝑢 + 𝛿𝑢
: = 𝑚4

liminf
𝑡→+∞

𝑅(𝑡) ≥
𝛾ℓ𝑚1 + 𝜇𝑚3 + 𝜅

ℓ𝑚4

𝛿𝑢
: = 𝑚5

 

 

This completes the proof. 

Theorem 3.6. Assume (ℋ1) and (ℋ2) hold. Then the system (V19) with initial conditions (C19) is permanent. 

Proof. From Lemmas 3.4 and 3.5, the system (V19) is permanent.  

 

Uniform asymptotic stability of positive almost periodic solutions 

In this section, we establish sufficient conditions for the existence, uniqueness and uniform asymptotic stability of 

positive almost periodic solution of system (V19) and (C19). In this regard we utilize the following theorem: 

Consider the following almost periodic system. 

 

x′(𝑡) = g(𝑡, x(𝑡))⋯⋯(1) 
 

and its associate product system 

 

𝐱′(𝑡) = 𝐠(𝑡, 𝐱(𝑡)), 𝐲′(𝑡) = 𝐠(𝑡, 𝐲(𝑡))⋯⋯(2) 
 

Where g:ℝ × ℬM → ℝ,ℬM = {z ∈ ℝ
𝑛: ∥ z ∥< M}, ∥ z ∥= sup𝑡∈ℝ|𝐳(𝑡)|, g(𝑡, z) is almost 

 

periodic in 𝑡 uniformly for 𝑧 ∈ ℬ𝑀 and is continuous in z. 

Then we have following result. 

Lemma 4.1([24]). Let 𝒱(𝑡, 𝑢, 𝑣) be Lyapunov function defined on ℝ+ × 𝒮M × 𝒮M and satisfies the  

Following conditions 

(i) A(∥ 𝑢 − 𝑣 ∥) ≤ 𝒱(𝑡, 𝑢, 𝑣) ≤ B(∥ 𝑢 − 𝑣 ∥), where A, B ∈ 𝒫 

 

𝒫 = {G ∈ 𝒞(ℝ+, ℝ+): G(0) = 0andGisincreasing} 
 

(ii) |𝒱(𝑡, 𝑢1, 𝑣1) − 𝒱(𝑡, 𝑢2, 𝑣2)| ≤ ℒ(‖𝑢1 − 𝑢2‖ + ‖𝑣1 − 𝑣2‖), where ℒ > 0 is a constant, 

(iii) 𝔇+𝒱(𝑡, 𝑢, 𝑣)|(2) ≤ −𝑐𝒱(𝑡, 𝑢, 𝑣), where 𝑐 > 0. 

 

Further, assume that there a solution z(𝑡) ∈ 𝒮M of system (2).  
Then there exist a unique almost periodic solution w(𝑡) ∈ 𝒮 of system (2), which is uniformly asymptotically stable. 

Define 

 

Π = {(S(𝑡), E(𝑡), 𝑄(𝑡), I(𝑡), R(𝑡))𝑇 ∈ ℝ+5: 0 < 𝑚1 ≤ S(𝑡) ≤ 𝑀1, 0 < 𝑚2 ≤ E(𝑡) ≤ 𝑀2

0 < 𝑚3 ≤ 𝑄(𝑡) ≤ 𝑀3, 0 < 𝑚4 ≤ I(𝑡) ≤ 𝑀4, 0 < 𝑚5 ≤ R(𝑡) ≤ 𝑀5}
 

 

Then, it is clear that Π ≠ ∅ and is invariant set of system (V19). Theorem 4.2. Assume (ℋ1), (ℋ2) and the following 

holds. (ℋ3) there is some 𝑐 > 0 such that 𝑐 = min{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝛿
ℓ} where  
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𝑐1 = (1 +𝑚2)𝛼
ℓ + 𝛽ℓ + 𝛾ℓ + 𝛿ℓ − 𝛽𝑢 − 𝛾𝑢 > 0, 𝑐2 = 2𝛼

ℓ𝑚1 + 𝜂
ℓ + 𝛿ℓ − 𝜎𝑢 − 𝜂𝑢 > 0

𝑐3 = 𝜌
ℓ + 𝜇ℓ + 𝛿ℓ − 𝜌𝑢 − 𝜇𝑢 > 0, 𝑐4 = 𝜅

ℓ + 𝜉ℓ + 𝛿ℓ − 𝜅𝑢 > 0
 

 

Then the dynamic system (V19) with initial conditions (C19) has a unique almost periodic positive solution 

(s(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) ∈ Π and is uniformly asymptotically stable. 

Proof. According to Theorem 3.6, every solution (s(𝑡), E(𝑡), 𝑄(𝑡), I(𝑡), R(𝑡)) of system (V19) satisfies that 𝑚1 ≤
S(𝑡) ≤ 𝑀1, 𝑚2 ≤ E(𝑡) ≤ 𝑀2, 𝑚3 ≤ Q(𝑡) ≤ 𝑀3, 𝑚4 ≤ I(𝑡) ≤ 𝑀4, 𝑚5 ≤ R(𝑡) ≤ 𝑀5. Hence, |S(𝑡)| ≤ 𝐴, |E(𝑡)| ≤
𝐵, |Q(𝑡)| ≤ 𝐶, |I(𝑡)| ≤ 𝐷, |R(𝑡)| ≤ 𝐸 where𝐴𝑖 = max{|𝑚1|, |𝑀1|}, 𝐵 = max{|𝑚2|, |𝑀2|}, 𝐶 = max{|𝑚3|, |𝑀3|}, 𝐷 =
max{|𝑚4|, |𝑀4|} and 𝐸 = max{|𝑚5|, |𝑀5|} Denote 

 

∥ (S(𝑡), E(𝑡), 𝑄(𝑡), I(𝑡), R(𝑡)) ∥= sup
𝑡∈ℝ+

|S(𝑡)| + sup
𝑡∈ℝ+

|E(𝑡)| + sup
𝑡∈ℝ+

|𝑄(𝑡)| + sup
𝑡∈ℝ+

|I(𝑡)| + sup
𝑡∈ℝ+

|R(𝑡)| 

 

Suppose that 𝑋 = (S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)), �̂� = (Ŝ(𝑡), Ê(𝑡), Q̂(𝑡), Î(𝑡), R̂(𝑡)) are any two positive solutions of 

system (V19), then  

 

∥ 𝑋 ∥≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 and ∥ �̂� ∥≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 

 

The product system of (V19) reads 

 
S′(𝑡) = 𝜋(𝑡) − 𝛼(𝑡)S(𝑡)E(𝑡) − [𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡)]S(𝑡)

E′(𝑡) = 𝛼(𝑡)S(𝑡)E(𝑡) − 𝜎(𝑡)E(𝑡 − 𝜏) − [n(𝑡) + 𝛿(𝑡)]E(𝑡)

Q′(𝑡) = 𝛽(𝑡)S(𝑡) + 𝜂(𝑡)E(𝑡) − [𝜌(𝑡) + 𝜇(𝑡) + 𝛿(𝑡)]Q(𝑡)

I′(𝑡) = 𝜎(𝑡)E(𝑡 − 𝜏) + 𝜌(𝑡)Q(𝑡) − [K(𝑡) + 𝜉(𝑡) + 𝛿(𝑡)]I(𝑡)

R′(𝑡) = 𝛾(𝑡)S(𝑡) + 𝜇(𝑡)Q(𝑡) + K(𝑡)I(𝑡) − 𝛿(𝑡)R(𝑡)

Ŝ′(𝑡) = 𝜋(𝑡) − 𝛼(𝑡)Ŝ(𝑡)Ê(𝑡) − [𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡)]Ŝ(𝑡)

Ê′(𝑡) = 𝛼(𝑡)Ŝ(𝑡)Ê(𝑡) − 𝜎(𝑡)Ê(𝑡 − 𝜏) − [n(𝑡) + 𝛿(𝑡)]Ê(𝑡)

Q̂′(𝑡) = 𝛽(𝑡)Ŝ(𝑡) + 𝜂(𝑡)Ê(𝑡) − [𝜌(𝑡) + 𝜇(𝑡) + 𝛿(𝑡)]Q̂(𝑡)

Î′(𝑡) = 𝜎(𝑡)Ê(𝑡 − 𝜏) + 𝜌(𝑡)Q̂(𝑡) − [K(𝑡) + 𝜉(𝑡) + 𝛿(𝑡)]Î(𝑡)

R̂′(𝑡) = 𝛾(𝑡)Ŝ(𝑡) + 𝜇(𝑡)Q̂(𝑡) + K(𝑡)Î(𝑡) − 𝛿(𝑡)R̂(𝑡) }
 
 
 
 
 

 
 
 
 
 

⋯(3) 

 

Define the Lyapunov function 𝒱(𝑡, 𝑋, �̂�) on ℝ+ × Π × Π as 

 

𝒱(𝑡, 𝑋, �̂�) = |S(𝑡) − Ŝ(𝑡)| + |E(𝑡) − Ê(𝑡)| + |Q(𝑡) − Q̂(𝑡)| + |I(𝑡) − Î(𝑡)| + |R(𝑡) − R̂(𝑡)| 
 

Define the norm 

It is easy to see that there exist two constants 𝑎 > 0, 𝑏 > 0 such that 

 

𝑎 ∥ 𝑋(𝑡) − �̂�(𝑡) ∥≤ 𝑉(𝑡, 𝑋, �̂�) ≤ 𝑏 ∥ 𝑋(𝑡) − �̂�(𝑡) ∥ 
 

Let A, B ∈ 𝒞(ℝ+, ℝ+), A(𝑥) = 𝑎𝑥, B(𝑥) = 𝑏𝑥, then the assumption 

(i) of Lemma 4.1 is satisfied. On the other hand, we have where ℒ = 1, so condition (ii) of Lemma 4.1 is satisfied. 

Now consider a function 𝒲(𝑡) = 𝒲1(𝑡) +𝒲2(𝑡) +𝒲3(𝑡) +𝒲4(𝑡) +𝒲5(𝑡), where  

 

𝒲1(𝑡) = |S(𝑡) − Ŝ(𝑡)|,𝒲2(𝑡) = |E(𝑡) − Ê(𝑡)| + 𝜎
𝑢∫

𝑡

𝑡−𝜏

|E(𝑡) − Ê(𝑡)|𝑑𝑡

𝒲3(𝑡) = |Q(𝑡) − Q̂(𝑡)|,𝒲4(𝑡) = |I(𝑡) − Î(𝑡)|and𝒲5(𝑡) = |𝑅(𝑡) − �̂�(𝑡)|

 

 

For 𝑡 ∈ ℝ+, calculating the Dini derivative 𝔇+𝒲1(𝑡) of 𝒲1(𝑡) along system (V19), we get 𝔇+𝒲1(𝑡) ≤
𝑠𝑖𝑔𝑛(S(𝑡) − Ŝ(𝑡))[S(𝑡) − Ŝ(𝑡)]′ 
 

≤ 𝑠𝑖𝑔𝑛(S(𝑡) − Ŝ(𝑡))[𝛼(𝑡)Ŝ(𝑡)Ê(𝑡) − 𝛼(𝑡)S(𝑡)E(𝑡) − (𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡))(S(𝑡) − Ŝ(𝑡))]

≤ 𝑠𝑖𝑔𝑛(S(𝑡) − Ŝ(𝑡))[−𝛼(𝑡)E(𝑡)(S(𝑡) − Ŝ(𝑡)) − 𝛼(𝑡)Ŝ(𝑡)(E(𝑡) − Ê(𝑡))

 −(𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡))(S(𝑡) − Ŝ(𝑡))]

≤ −(𝛼ℓ + 𝛽ℓ + 𝛾ℓ + 𝛿ℓ)|S(𝑡) − Ŝ(𝑡)| − 𝛼ℓ𝑚1|E(𝑡) − Ê(𝑡)|

 

  

and  

 

D^+W_5(t) sign(R(t)-R(t))[R(t)-R(t)]^ 
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l sign(R(t)-R(t))[(t)(S(t)-S(t))+(t)(Q(t)-Q(t))+k(t)(I(t)-I(t))  

-(t)(R(t)-R(t))]  

^u|S(t)-S(t)|+^u|Q(t)-Q(t)|+K^u|I(t)-I(t)|-^|R(t)-R(t)| and 

𝔇5
+𝒲(𝑡) ≤ 𝑠𝑖𝑔𝑛(R(𝑡) − R̂(𝑡))[R(𝑡) − R̂(𝑡)]′ 

≤ 𝑠𝑖𝑔𝑛(R(𝑡) − R̂(𝑡))[𝛾(𝑡)(S(𝑡) − Ŝ(𝑡)) + 𝜇(𝑡)(Q(𝑡) − Q̂(𝑡)) + k(𝑡)(I(𝑡) − Î(𝑡)) − 𝛿(𝑡)(R(𝑡) − R̂(𝑡))
≤ 𝛾𝑢|S(𝑡) − Ŝ(𝑡)| + 𝜇𝑢|𝑄(𝑡) − Q̂(𝑡)| + K𝑢|I(𝑡) − Î(𝑡)| − 𝛿ℓ|R(𝑡) − R̂(𝑡)| 

 

But 𝔇+𝒱(𝑡) ≤ 𝔇+𝒲(𝑡), 𝑡 ∈ ℝ+.  

Therefore, from the above inequalities, we get 

 

𝔇+𝒱(𝑡) ≤ −((1 +𝑚2)𝛼
ℓ + 𝛽ℓ + 𝛾ℓ + 𝛿ℓ − 𝛽𝑢 − 𝛾𝑢) |𝐒(𝑡) − Ŝ(𝑡)|

−(2𝛼ℓ𝑚1 + 𝜂
ℓ + 𝛿ℓ − 𝜎𝑢 − 𝜂𝑢)|E(𝑡) − Ê(𝑡)|

−(𝜌ℓ + 𝜇ℓ + 𝛿ℓ − 𝜌𝑢 − 𝜇𝑢)|𝑄(𝑡) − Q̂(𝑡)| − (𝜅ℓ + 𝜉ℓ + 𝛿ℓ − k𝑢)|I(𝑡) − Î(𝑡)|

−𝛿ℓ|R(𝑡) − R̂(𝑡)|

≤ −𝑐1|S(𝑡) − Ŝ(𝑡)| − 𝑐2|E(𝑡) − Ê(𝑡)| − 𝑐3|Q(𝑡) − Q̂(𝑡)|

−𝑐4|I(𝑡) − Î(𝑡)| − 𝛿
ℓ|R(𝑡) − R̂(𝑡)|

≤ −𝑐𝒱(𝑡)

 

 

Thus, the assumption (iii) of Lemaa 4.1 is satisfied and hence, it follows from Lemma 4.1 that there exists a unique 

uniformly asymptotically stable almost periodic positive solution 

 

(s(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) of dynamic system (V19) and (S(𝑡), E(𝑡), 𝑄(𝑡), I(𝑡), R(𝑡)) ∈ Π 

 

This completes the proof. 

 

Numerical Simulations 

Consider the following model 

 
S′(𝑡) = 𝜋(𝑡) − 𝛼(𝑡)S(𝑡)E(𝑡) − [𝛽(𝑡) + 𝛾(𝑡) + 𝛿(𝑡)]S(𝑡)

E′(𝑡) = 𝛼(𝑡)S(𝑡)E(𝑡) − 𝜎(𝑡)E(𝑡 − 𝜏) − [n(𝑡) + 𝛿(𝑡)]E(𝑡)

Q′(𝑡) = 𝛽(𝑡)S(𝑡) + 𝜂(𝑡)E(𝑡) − [𝜌(𝑡) + 𝜇(𝑡) + 𝛿(𝑡)]𝑄(𝑡)

I′(𝑡) = 𝜎(𝑡)E(𝑡 − 𝜏) + 𝜌(𝑡)Q(𝑡) − [K(𝑡) + 𝜉(𝑡) + 𝛿(𝑡)]I(𝑡)

R′(𝑡) = 𝛾(𝑡)S(𝑡) + 𝜇(𝑡)Q(𝑡) + k(𝑡)I(𝑡) − 𝛿(𝑡)R(𝑡) }
 
 

 
 

⋯⋯(4) 

 

Where 

 

𝜋(𝑡) = 1 + sin(√2𝑡), 𝛼(𝑡) = 2 + 0.1cos(√2𝑡), 𝛽(𝑡) = 0.05 + 0.05sin(√3𝑡), 𝛿(𝑡) = 1

𝛾(𝑡) = 0.05 + 0.05cos(√5𝑡), 𝜎(𝑡) = 0.05 + 0.05sin(√1𝑡), 𝜇(𝑡) = 0.02 + 0.01cos(√2𝑡)

𝜂(𝑡) = 0.05 + 0.05sin(√3𝑡), 𝜌(𝑡) = 0.02 + 0.01sin(√1𝑡), 𝜅(𝑡) = 0.02 + 0.01cos(√2𝑡)

𝜉(𝑡) = 0.02 + 0.01sin(√3𝑡)

 

 

Then 

 
𝑚1 = 0.1851851852,𝑚2 = 0.0148148148,𝑚3 = 0.009433962264
𝑚4 = 0.0008768113069,𝑚5 = 0.009465474731

 

 

and 

𝑐1 = 3.031111112, 𝑐2 = 1.627777778, 𝑐3 = 0.98, 𝑐4 = 1.01 

 

So,  

 

𝑐 = min{𝑐1, 𝑐2, 𝑐3, 𝑐4, 1} = 0.98 > 0. Thus, all conditions of Theorem 4.2 are satisfied. From Fig. 2-6 

it is easy to see that for system (4) there exists a positive almost periodic solution denoted by 
(S∗(𝑡), E∗(𝑡), Q∗(𝑡), I∗(𝑡), R∗(𝑡)). 

 

Moreover, Fig. 7 − 11 shows that any positive solution (S(𝑡), E(𝑡), Q(𝑡), I(𝑡), R(𝑡)) tends to the above almost 

periodic solution  

 

(S∗(𝑡), E∗(𝑡), Q∗(𝑡), I∗(𝑡), R∗(𝑡)) 
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Fig 2: Positive almost periodic solution.(4). Time series of S∗(𝑡) 
with ini of system.S∗(0) = 1.55 and 𝑡 over [0,30]. 

Fig 3: Positive almost periodic solution of system (4). Time 

series of E^* (t) with initial value E^* (0)=10 and t over [0,30] 

 

 
 

Fig 4: Positive almost periodic solution of system (4).Time series of Q^* (t) 

with initial value Q^* (0)=0.15 and t over [0,30] 

Fig 5: Positive almost periodic solution of system 

(4) time series 

 

𝐼∗(𝑡)𝑤𝑖ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒I^*(0)=0.1𝑎𝑛𝑑t𝑜𝑣𝑒𝑟[0,30][𝑤𝑖𝑑𝑡ℎ = 17𝑐𝑚, ℎ𝑒𝑖𝑔ℎ𝑡 = 6𝑐𝑚]𝑖𝑚𝑎𝑔𝑒𝑠/
𝑓𝑖𝑔𝑢𝑟𝑒 5. 𝑃𝑁𝐺2𝐹𝑖𝑔𝑢𝑟𝑒6: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑎𝑙𝑚𝑜𝑠𝑡𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(4). 𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠𝑜𝑓R^*(t)𝑤𝑖𝑡ℎ𝑖𝑛𝑖 − 𝑠𝑦𝑠𝑡𝑒𝑚(4) 

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓S(t)𝑎𝑛𝑑S^*(t)𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒R^*(0)=0.08𝑎𝑛𝑑t

𝑜𝑣𝑒𝑟[0,30]𝐹𝑖𝑔𝑢𝑟𝑒7:𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑜𝑓𝑠𝑦𝑠𝑡𝑒𝑚(4) .𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠𝑜𝑓I^*(t) with initial values 

S(0) = 1.55, S∗(0) = 1.9 and 𝑡 over [0,30] 
 

 

 
 

Fig 8: Uniformly asymptotic stability of system (4).Time series of 

E(t) and E^* (t) with initial values E(0)=10,E^* (0)=16 and t over 

[0,30] 

Fig 9: Uniformly asymptotic stability of system (4)Time series of 

𝑄(𝑡) and 𝑄∗(𝑡) with initial values Q(0) = 0.15, Q∗(0) = 0.17and 𝑡 
over [0,30] 
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Fig 10: Uniformly asymptotic stability Time series of R(𝑡) and R∗(𝑡) with initial values 

I(0) = 0.1, I∗(0) = 0.11 with initial values R(0) = 0.08, R∗(0) = 0.12 and 𝑡 over 

[0,30]. and 𝑡 over [0,30] 

Fig 11: Uniformly asymptotic stability of 

system (4). Time series of I(𝑡) and I∗(𝑡) of 

system (4). 

 

Conclusion 

This paper investigated a non-autonomous time-delayed COVID-19 epidemic model, aiming to address critical 

questions regarding disease spread and control strategies. By utilizing differential inequalities and the Lyapunov 

functional method, the study derived conditions for the permanence of the model and demonstrated the existence and 

uniform asymptotic stability of almost periodic solutions. The analysis provided insights into the long-term behavior 

of the epidemic dynamics, offering valuable information for policymakers and healthcare professionals. Overall, this 

research contributes to the understanding of COVID-19 transmission dynamics and provides a mathematical 

framework for assessing intervention strategies. Further numerical simulations supported the theoretical findings, 

reinforcing their practical relevance. 
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