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Abstract 

A new approach is presented for solving ordinary differential equations. The new approach is named as 

the Core-Shell approach. Most of the well-established techniques can be re-interpreted and the results can 

be recovered using this new approach. The analysis is devoted mostly to linear differential equations with 

constant and variable coefficients. It is hoped that the undergraduate students in applied fields taking 

differential equation courses will benefit from the new approach by increasing their understanding of the 

fundamental concepts and solution techniques. 

 

Keywords: Ordinary differential equations, analytical solutions, operator decomposition, core-shell 

approach 

 

Introduction 

Differential equations course is one of the fundamental courses for students looking for a 

degree in Mathematics, Physics or Engineering. The course is taken at the sophomore year 

after gaining the necessary skills in Calculus. Students often have hard times in grasping the 

ideas and fundamentals of the topic and are usually paralysed when encountering a new 

differential equation to be solved. The method presented in this paper suggests a new unified 

approach to the understanding of differential equations as well as their solution techniques. 

The first step is to identify the differential equation as an embedded differential equation, to 

extract the core and shell parts of it. The next step is to solve the shell equation first and then 

solve the core equation to finally reach to a solution of the embedded equation. The method 

resembles much like eating a fruit with a shell covering the core part; one first eliminates the 

shell and then reaches the core, eats it for satisfying his/her nutrition demands.  

First, the theory of the method applicable to the linear and nonlinear equations are given 

briefly. Then the solutions for constant and variable coefficient second order linear differential 

equations are derived using the method. Detailed discussions on factorisation of the operators 

are made. In addition to the approach being a new one, some of the results presented are new 

and not published before. Where ever applies, proper acknowledgements to the previous work 

presenting the same results are given. The generalization of the ideas to arbitrary orders of 

differential equations are given together with some research project suggestions for advanced 

undergraduate students.  

Some of the closely related work on the topic are given as past references and verification of 

the results presented here obtained by similar and non-similar methods. For constant 

coefficient second order linear differential equations, Lutzer (2006) [5] presented a general 

solution of the integral form. Employing the analogy between the first order variable 

coefficient equations and second order constant coefficient equations and a transformation, 

Tolle (2011) [10] presented a solution technique for the homogenous constant coefficient 

second order equations. For constant coefficient linear equations of arbitrary order, Figueroa 

and Rebolledo (2015) [3] constructed a general solution of the integral form. The work was 

indeed an extension of their previous work (Figueroa and Rebolledo, 2015a) [4] on second 

order differential equations which covers constant coefficient as well as variable coefficients. 

Factorisation method was employed for variable coefficient linear second order equations by 

Clegg (2006) [2]. By a special transformation based on an exponential integral function, the 

variable coefficient second order equations with coefficients satisfying certain conditions were 

solved. Some exact solutions for certain variable coefficient second order equations were also 

presented (Mohammed and Zeleke, 2015) [6].  
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Similar to our results on variable coefficient second order linear equations, operator factorization which reduces to solving the 

Riccati equation was outlined (Robin, 2007) [9]. Solution algorithm by quadratures of certain variable coefficient second order 

equations were depicted (Ward, 1984) [11]. Second order linear equations with coefficients being polynomials were also 

investigated in detail (Wilmer III and Costa, 2008) [12]. 

 

Theory of the Core-Shell Approach 

It may be good to divide the embedded equations into two main categories first: a) Linear Embedded, b) Nonlinear Embedded. In 

this study, the linear embedded equations will be extensively analysed. The nonlinear case is left to further more advanced studies 

as in a typical undergraduate course, usually the linear equations are mainly treated with a possible exception of the first order 

equations. The application of the method to nonlinear equations is not straightforward and may not apply to all nonlinear 

equations. On the contrary, the shell-core approach can be applied theoretically to any linear differential equation of arbitrary 

order (excluding the first order equations) such as, constant coefficient equations, variable coefficient equations, homogenous 

equations, non-homogenous equations, etc. 

 

Linear Embedded Equations 

Consider the linear differential equation with two linear operators ℒ1 and ℒ2 

 

ℒ2ℒ1𝑦1(𝑥) = 𝑦3(𝑥) (Embedded equation) (2.1) 

 

Where  

 

ℒ1𝑦1(𝑥) = 𝑦2(𝑥) (Core equation)  (2.2) 

 

is the core equation, and 

 

ℒ2𝑦2(𝑥) = 𝑦3(𝑥) (Shell equation)  (2.3) 

 

is the shell equation. Note that 𝑦3(𝑥) is a given known function of the original equation. Once the shell equation is solved for 

𝑦2(𝑥) and substituted into the right hand side of the core equation, 𝑦1(𝑥), which is the solution of the embedded equation is 

found. One may define the functions and operators: 

𝑦1(𝑥): Solution of both the core and embedded equation 

𝑦2(𝑥): Non-homogenous part of the core equation and solution of the shell equation 

𝑦3(𝑥): Non-homogenous part of both the shell equation and the embedded equation 

ℒ1 : The core differential operator 

ℒ2 : The shell differential operator 

There might be more than one shell operator. In that case, outer shell and intermediate shell terms may be used. Consider the 

linear embedded differential equation 

 

ℒ𝑝ℒ𝑝−1 … ℒ2ℒ1𝑦1(𝑥) = 𝑦𝑝+1(𝑥) (Embedded equation)  (2.4) 

 

where ℒ𝑝 is the outer shell, ℒ𝑝−1 … ℒ2 are the intermediate shells and ℒ1 is the core operator. The equations are decomposed into 

the following components 

 

ℒ1𝑦1(𝑥) = 𝑦2(𝑥) (Core equation)  (2.5) 

 

ℒ2𝑦2(𝑥) = 𝑦3(𝑥) (Intermediate First Shell equation)  (2.6) 

 

ℒ3𝑦3(𝑥) = 𝑦4(𝑥) (Intermediate Second Shell equation)  (2.7) 

 

ℒ𝑝𝑦𝑝(𝑥) = 𝑦𝑝+1(𝑥) (Shell equation)  (2.8) 

 

Starting from the last shell equation, solving the equations one by one moving backwards, finally the core is reached whose 

solution 𝑦1(𝑥) is the solution of the original embedded equation. 

 

2.2. Nonlinear Embedded Equations 

Consider the nonlinear embedded equation 

 

𝐹1 (𝑥, 𝑦1(𝑥), 𝑦1
 (𝑥) … 𝑦1

(𝑘1)(𝑥)) = 𝑦3(𝑥) (Embedded equation)  (2.9) 

 

Which, if possible, may be decomposed into the core and shell parts 

 

𝐹2 (𝑥, 𝑦1(𝑥), 𝑦1
 (𝑥) … 𝑦1

(𝑘2)(𝑥)) = 𝑦2(𝑥) (Core equation)  (2.10) 
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𝐹3 (𝑥, 𝑦2(𝑥), 𝑦2
 (𝑥) … 𝑦2

(𝑘3)
(𝑥)) = 𝑦3(𝑥) (Shell equation)  (2.11) 

 

with 𝑘1 = 𝑘2 + 𝑘3. If one of the 𝐹2 or 𝐹3 are linear in their arguments, then one may speak of mixed embedded equations which 

may still be investigated under the nonlinear embedded equation title, since the original equation is nonlinear.  

Since the nonlinear case will not be investigated in the subsequent sections, two simple examples will be given to clarify the 

issues. 

 

Example 2.1 

Consider the nonlinear equation with initial conditions: 

 

𝑦 + 𝑦 2 = 0 𝑦(0) = 0,  𝑦(0) = 1  (2.12) 

 

This is a mixed embedded equation with the core equation being linear 

 

𝑦1
 = 𝑦2 (Core equation)  (2.13) 

 

and the shell equation being nonlinear 

 

𝑦2
 + 𝑦2

2 = 0 (Shell equation)  (2.14) 

 

The shell equation is solved first 

 

𝑦2 =
1

𝑥+𝑐1
  (2.15) 

 

and substituted into the core equation for which the solution is 

 

𝑦1 = ln(𝑥 + 𝑐1) + 𝑐2  (2.16) 

 

Applying the initial conditions, the final solution satisfying the equation and conditions is 

 

𝑦1 = ln(1 + 𝑥)  (2.17) 

 

As seen from this basic example, the well-known reduction of order method can be re-interpreted within the context of the core-

shell approach.  

 

Example 2.2 

For the nonlinear embedded equation 

 

(1 + 𝑦 2)𝑦 − 3𝑦𝑦 2 = 0  (2.18) 

 

if one can realize its core and shell parts 

 
𝑦1


(1+𝑦1
 2)

3/2 = 𝑦2 (Core equation)  (2.19) 

 

𝑦2
 = 0 (Shell equation)  (2.20) 

 

the solution can be found by solving the shell equation and substituting to the core equation. Indeed, the core equation may also be 

divided into shell and core parts by applying the reduction of order method. 

 

General Theory for Second Order Linear Equations 

First the solution formula for a second order variable coefficient differential equation will be given for the homogenous and non-

homogenous cases and then the applications for the constant coefficient and variable coefficient cases are treated in detail.  

 

Theorem 3.1 

For the variable coefficient homogenous second order linear differential equation  

 

𝑦 + 𝑝(𝑥)𝑦 + 𝑞(𝑥)𝑦 = 0  (3.1) 

 

if the differential operator can be expressed in the core-shell form 

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦 = 0  (3.2) 
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where D=d/dx, then the general solution is of the below form  

 

𝑦(𝑥) = 𝑐1𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑏(𝑥)𝑑𝑥  (3.3) 

 

The functions in the solutions satisfy the relations 

 

𝑝(𝑥) = 𝑎(𝑥) + 𝑏(𝑥), 

 

𝑞(𝑥) = 𝑏(𝑥) + 𝑎(𝑥)𝑏(𝑥)   (3.4) 

 

Proof 

The proof will be given by employing the core-shell approach. Note the relevant parts of the equation 

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦1 = 0 (Embedded Equation) (3.5) 

 

(𝐷 + 𝑏(𝑥))𝑦1 = 𝑦2 (Core Equation)  (3.6) 

 

(𝐷 + 𝑎(𝑥))𝑦2 = 0 (Shell Equation)  (3.7) 

 

First the shell equation is solved 

 

𝑦2
 + 𝑎(𝑥)𝑦2 = 0  𝑦2 = 𝑐1𝑒− ∫ 𝑎(𝑥)𝑑𝑥  (3.8) 

 

and then the core equation 

 

𝑦1
 + 𝑏(𝑥)𝑦1 = 𝑐1𝑒− ∫ 𝑎(𝑥)𝑑𝑥  (3.9) 

 

which is solved by multiplying the equation with the integrating factor 𝑒∫ 𝑏(𝑥)𝑑𝑥 

 

𝑦1 = 𝑐1𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑏(𝑥)𝑑𝑥 (3.10) Furthermore  

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦 = 𝑦 + (𝑎(𝑥) + 𝑏(𝑥))𝑦 + (𝑏(𝑥) + 𝑎(𝑥)𝑏(𝑥))𝑦 = 0  (3.11) 

 

and comparing with the original equation 𝑝 = 𝑎 + 𝑏 and 𝑞 = 𝑏 + 𝑎𝑏 

Solution (3.3) was already reported previously for constant and variable second order equations (Lutzer, 2006; Figueroa 

&Rebolledo, 2015a; Robin, 2007, Ward, 1984) [5, 4, 9, 11]. For the special case of a(x)=b(x), solution (3.3) reduces to 

 

𝑦(𝑥) = 𝑐1𝑥𝑒− ∫ 𝑎(𝑥)𝑑𝑥 + 𝑐2𝑒− ∫ 𝑎(𝑥)𝑑𝑥  (3.12) 

 

It should be noted that for constant operators, while the operators commute,(𝐷 + 𝑎)(𝐷 + 𝑏) = (𝐷 + 𝑏)(𝐷 + 𝑎), this is not the 

case for variable operators  

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))(𝐷 + 𝑏(𝑥))(𝐷 + 𝑎(𝑥)). 

 

For the non-homogenous form, the following theorem applies 

 

Theorem 3.2 

For the variable coefficient non-homogenous second order linear differential equation  

 

𝑦 + 𝑝(𝑥)𝑦 + 𝑞(𝑥)𝑦 = 𝑓(𝑥)  (3.13) 

 

if the differential operator can be expressed in the core-shell form 

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦 = 𝑓(𝑥)  (3.14) 

 

then the general solution is  

 

𝑦(𝑥) = 𝑐1𝑦1ℎ(𝑥) + 𝑐2𝑦2ℎ(𝑥) + 𝑦𝑝(𝑥)  (3.15) 

 

Where 

 

𝑦1ℎ(𝑥) = 𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥𝑑𝑥  (3.16) 
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𝑦2ℎ(𝑥) = 𝑒− ∫ 𝑏(𝑥)𝑑𝑥  (3.17) 

 

𝑦𝑝(𝑥) = 𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥 ∫ 𝑓(𝑥)𝑒∫ 𝑎(𝑥)𝑑𝑥 𝑑𝑥  (3.18) 

 

With 

 

𝑝(𝑥) = 𝑎(𝑥) + 𝑏(𝑥),𝑞(𝑥) = 𝑏(𝑥) + 𝑎(𝑥)𝑏(𝑥)  (3.19) 

 

Proof 

 

The proof for the homogenous solutions were already given previously. For the particular solution, the core and shell equations 

are 

 

(𝐷 + 𝑏(𝑥))𝑦𝑝 = 𝑢(𝑥) (core equation)  (3.20) 

 

(𝐷 + 𝑎(𝑥))𝑢 = 𝑓(𝑥) (shell equation)  (3.21) 

 

The solution of the shell equation is 

 

𝑢 = 𝑒− ∫ 𝑎(𝑥)𝑑𝑥 ∫ 𝑓(𝑥)𝑒∫ 𝑎(𝑥)𝑑𝑥 𝑑𝑥 (3.22) 

 

which upon substitution into the core equation 

 

(𝐷 + 𝑏(𝑥))𝑦𝑝 = 𝑒− ∫ 𝑎(𝑥)𝑑𝑥 ∫ 𝑓(𝑥)𝑒∫ 𝑎(𝑥)𝑑𝑥 𝑑𝑥  (3.23) 

 

produces the solution 

 

𝑦𝑝(𝑥) = 𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫(𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥 ∫ 𝑓(𝑥)𝑒∫ 𝑎(𝑥)𝑑𝑥 𝑑𝑥)𝑑𝑥  (3.24) 

 

Similar results were reported previously (Lutzer, 2006; Figueroa & Rebolledo, 2015a; Robin, 2007, Ward, 1984) [5, 4, 9, 11]. This 

particular solution is identical to the solution obtained by the variation of parameters method. For the variation of parameters, the 

particular solution is 

 

𝑦𝑝 = −𝑦1ℎ ∫
𝑦2ℎ𝑓

𝑊
𝑑𝑥 + 𝑦2ℎ ∫

𝑦1ℎ𝑓

𝑊
𝑑𝑥  (3.25) 

 

where W is the Wronskian determinant defined by 

 

𝑊 = 𝑦1ℎ𝑦2ℎ
 − 𝑦2ℎ𝑦1ℎ

   (3.26) 

 

Substituting (3.16) and (3.17), making the simplifications, the Wronskian turns out to be 

 

𝑊(𝑥) = 𝑒− ∫(𝑎(𝑥)+𝑏(𝑥))𝑑𝑥  (3.27) 

 

Finally, inserting (3.16), (3.17) and (3.27) into (3.25) leads to the particular solution identical with (3.24).  

 

Applications for Second Order Linear Equations 

Applications of the general theorems as well as the new way of approach are depicted for linear second order differential 

equations in this section.  

 

Second Order Constant Coefficient Equations 

If a(x)=a0 and b(x)=b0, a0 and b0 being constants, the differential equation is  

 

(𝐷 + 𝑎0)(𝐷 + 𝑏0)𝑦 = 𝑦 + (𝑎0 + 𝑏0)𝑦 + 𝑎0𝑏0𝑦 = 0 (4.1) whose solution turns out to be from Theorem 3.1    

 

𝑦(𝑥) = 𝑐1𝑒− ∫ 𝑏0𝑑𝑥 ∫ 𝑒∫(𝑏0−𝑎0)𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑏0𝑑𝑥  (4.2) 

 

Performing the integrals and re-defining c1, the solution is  

 

𝑦(𝑥) = 𝑐1𝑒−𝑎0𝑥+𝑐2𝑒−𝑏0𝑥  (4.3) 

 

which is the well- known solution for homogenous linear equations possessing roots of  

-a0 and -b0 for the characteristic equation with a0 ≠b0. Although (4.3) is not valid for  
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a0 =b0, Eq. (4.2) still holds for this case also. However, in the decomposition of the second order operator, a(x) and b(x) need not 

be constants and they may be variables, yet the outcoming equation is still a constant coefficient equation. From Theorem 3.1, one 

recalls that a(x) and b(x) should satisfy 

 

𝑝0 = 𝑎(𝑥) + 𝑏(𝑥), 𝑞0 = 𝑏(𝑥) + 𝑎(𝑥)𝑏(𝑥)  (4.4) 

 

with 𝑝0 and 𝑞0 are constants for the constant coefficient linear equation 

 

𝑦 + 𝑝0𝑦 + 𝑞0𝑦 = 0  (4.5) 

 

Examples will be given to clarify the issue 

 

Example 4.1.1 

Consider the equation  

 

𝑦 + 𝑦 = 0  (4.6) 

 

If one looks for a constant coefficient decomposition, then from (4.4) 

 

0 = 𝑎0 + 𝑏0 1 = 𝑎0𝑏0  (4.7) 

 

which dictates a solution 𝑎0 = 𝑖 and 𝑏0 = −𝑖. In the operator notation, the equation is 

 
(𝐷 + 𝑖)(𝐷 − 𝑖)𝑦 = 0  (4.8) 

 

with a solution from (4.3)  

 

𝑦(𝑥) = 𝑐1𝑒−𝑖𝑥+𝑐2𝑒𝑖𝑥  (4.9) 

 

This solution reduces to the harmonic solution by employing the Euler formula and redefining the constants 

 

𝑦(𝑥) = 𝑐1𝑐𝑜𝑠𝑥+𝑐2𝑠𝑖𝑛𝑥.  (4.10) 

 

If one does not want to deal with complex quantities, then a real decomposition, albeit variable, is already available. If 𝑎(𝑥) =
−𝑡𝑎𝑛𝑥, 𝑏(𝑥) = 𝑡𝑎𝑛𝑥, equation (4.4) is again satisfied. Hence for 

 

(𝐷 − 𝑡𝑎𝑛𝑥)(𝐷 + 𝑡𝑎𝑛𝑥)𝑦 = (𝐷2 + 1)𝑦 = 𝑦 + 𝑦 = 0  (4.11) 

 

the solution (3.3) reads 

 

𝑦(𝑥) = 𝑐1𝑒− ∫ 𝑡𝑎𝑛𝑥𝑑𝑥 ∫ 𝑒∫ 2𝑡𝑎𝑛𝑥𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑡𝑎𝑛𝑥𝑑𝑥  (4.12) 

 

Performing the integrals  

 

𝑦(𝑥) = 𝑐1𝑐𝑜𝑠𝑥 ∫
1

𝑐𝑜𝑠2𝑥
𝑑𝑥 + 𝑐2𝑐𝑜𝑠𝑥  (4.13) 

 

The final result is  

 

𝑦(𝑥) = 𝑐1𝑠𝑖𝑛𝑥+𝑐2𝑐𝑜𝑠𝑥  (4.14) 

 

which is the same result obtained by complex constant roots   

Inspired from the example, the following theorem can be stated:  

 

Theorem 4.1 

The second order constant coefficient linear differential equation  

 

𝑦 + 𝑝0𝑦 + 𝑞0𝑦 = 0  (4.15) 

 

can be expressed in operator form 

 
(𝐷 + 𝑎)(𝐷 + 𝑏)𝑦 = 0  (4.16) 

 

where a and b can be either 

i) constants (may be real or imaginary numbers) 
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𝑎 =
1

2
(𝑝0 + √𝑝0

2 − 4𝑞0), 𝑏 =
1

2
(𝑝0 − √𝑝0

2 − 4𝑞0)  (4.17) 

 

ii) variables 

 

𝑏 = 𝑏0 +
2𝑏0−𝑝0

𝑐(2𝑏0−𝑝0)𝑒−(2𝑏0−𝑝0)𝑥−1
, 𝑎 = 𝑝0 − 𝑏  (4.18) 

 

where 

 

 𝑏0 =
1

2
(𝑝0 ∓ √𝑝0

2 − 4𝑞0)  (4.19) 

 

Proof 

The first part is straightforward and left as an exercise. For the second part, from (4.4) 

 

𝑝0 = 𝑎(𝑥) + 𝑏(𝑥), 𝑞0 = 𝑏(𝑥) + 𝑎(𝑥)𝑏(𝑥)  (4.20) 

 

Substituting 𝑎 = 𝑝0 − 𝑏 to the second equation leads to a Riccati equation 

 

𝑏 + 𝑝0𝑏 = 𝑞0 + 𝑏2.  (4.21) 

 

One constant solution is 

 

𝑏0 =
1

2
(𝑝0 ∓ √𝑝0

2 − 4𝑞0)  (4.22) 

 

and the other solution can be obtained by the transformation 

 

𝑏 = 𝑏0 +
1

𝑣
  (4.23) 

 

which leads to  

 

𝑣  + (2𝑏0 − 𝑝0)𝑣 = −1  (4.24) 

 

Solving and substituting into (4.23) finally leads to (4.18)  

 

In fact, finding the decomposed operators reduces to a problem of solving a Riccati equation. The importance of the Riccati 

equation stems from the fact that the solution of any second order variable coefficient linear equation is associated with the 

solution of the Riccati equation. From the educational point of view, this property of the Riccati equation should be emphasized in 

the classrooms. For a detailed analysis on Riccati equations and possible solutions, see Ndiaye (2022) [7]. The constant c in (4.18) 

is arbitrary and can be assigned a special value to simplify the calculations and the form of the operators. 

 

Example 4.1.2 

For the differential equation  

 

𝑦 + 3𝑦 + 2𝑦 = 0  (4.25) 

 

with p0=3 and q0=2, b0=1 or 2 from (4.19). Take b0=1, then  

 

𝑏 = 1 +
1

𝑐𝑒𝑥+1
, 𝑎 = 2 −

1

𝑐𝑒𝑥+1
  (4.26) 

 

from (4.18) 

 

Example 4.1.3 

For the differential equation  

 

𝑦 + 2𝑦 + 2𝑦 = 0  (4.27) 

 

with p0=2 and q0=2, b0=1+i. Then  

 

𝑏 =
4𝑐2+4𝑐(−𝑠𝑖𝑛2𝑥+𝑐𝑜𝑠2𝑥)+𝑖(4𝑐2−1)

4𝑐2−4𝑐𝑠𝑖𝑛2𝑥+1
,  (4.28) 

 

from (4.18). One may choose now c=1/2 so that the decomposition is real  
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𝑏 =
1+2(−𝑠𝑖𝑛2𝑥+𝑐𝑜𝑠2𝑥)

2(1−𝑠𝑖𝑛2𝑥)
, 𝑎 =

3−2(𝑠𝑖𝑛2𝑥+𝑐𝑜𝑠2𝑥)

2(1−𝑠𝑖𝑛2𝑥)
  (4.29) 

 

The following theorem ensures a real operator expression for a constant coefficient second order linear equation.  

 

Theorem 4.2 

For the second order constant coefficient linear differential equation  

 

𝑦 + 𝑝0𝑦 + 𝑞0𝑦 = 0  (4.30) 

 

whose characteristic equation possesses imaginary roots, i.e. 

 

𝑝0
2 − 4𝑞0 < 0  (4.31) 

 

the second order differential operator 𝐷2 + 𝑝0𝐷 + 𝑞0 can always be decomposed into first order operators  

 
(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦 = 0  (4.32) 

 

where a(x) and b(x) are real variable quantities and defined as 

 

𝑏 =
𝑝0

2
+

√4𝑞0−𝑝0
2𝑐𝑜𝑠(√4𝑞0−𝑝0 

2 𝑥)

2(1−𝑠𝑖𝑛(√4𝑞0−𝑝0 
2 𝑥))

 or 𝑏 =
𝑝0

2
−

√4𝑞0−𝑝0
2𝑐𝑜𝑠(√4𝑞0−𝑝0 

2 𝑥)

2(1+𝑠𝑖𝑛(√4𝑞0−𝑝0 
2 𝑥))

  (4.33) 

 

 𝑎 = 𝑝0 − 𝑏  (4.34) 

 

Proof 

Select 𝑏0 =
1

2
(𝑝0 + √𝑝0

2 − 4𝑞0) without loss of generality from (4.19). From (4.18) 

 

𝑏 = 𝑏0 +
2𝑏0−𝑝0

𝑐(2𝑏0−𝑝0)𝑒−(2𝑏0−𝑝0)𝑥−1
  (4.35) 

 

2𝑏0 − 𝑝0 = √𝑝0
2 − 4𝑞0 = 𝑘𝑖 since 𝑝0

2 − 4𝑞0 < 0 with 𝑘2 = 4𝑞0 − 𝑝0
2. Substituting all into (4.35), employing the Euler formula, 

making the denominator real by multiplying with its complex conjugate and rearranging 

 

𝑏 =
1

2
𝑝0(𝑐2𝑘2+1−2𝑐𝑘𝑠𝑖𝑛𝑘𝑥)+

1

2
𝑘𝑖(𝑐2𝑘2−1)+𝑐𝑘2𝑐𝑜𝑠𝑘𝑥

𝑐2𝑘2+1−2𝑐𝑘𝑠𝑖𝑛𝑘𝑥
.  (4.36) 

 

To eliminate the imaginary part, one may choose the arbitrary coefficient 

 

𝑐 = ∓
1

𝑘
   (4.37) 

 

eventually leading to (4.33) and (4.34)  

 

Second Order Variable Coefficient Equations 

Some sample problems with variable coefficients will be treated in this sub-section.  

 

Example 4.2.1 Cauchy-Euler Differential Equation 

Consider the Cauchy-Euler differential equation 

 

𝑦 +
𝑝0

𝑥
𝑦 +

𝑞0

𝑥2 𝑦 = 0  (4.38) 

 

for which the standard solution is achieved by a transformation t=lnx (ONeil, 1991) [8]. For the application of the core-shell 

approach, from Theorem 3.1, first the a(x) and b(x) should be determined  

 

𝑎 + 𝑏 =
𝑝0

𝑥
, 𝑏 + 𝑎𝑏 =

𝑞0

𝑥2  (4.39) 

 

Substituting a(x) from the first equation into the second one  

 

𝑏 +
𝑝0

𝑥
𝑏 =

𝑞0

𝑥2 + 𝑏2  (4.40) 

 

yields the Riccati equation. Try solutions of the form b=c/x with the constant c satisfying  
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 𝑐2 + (1 − 𝑝0)𝑐 + 𝑞0 = 0  (4.41) 

 

Solving c and substituting to b=c/x yields  

 

𝑏 =
1

2𝑥
(𝑝0 − 1 + √(1 − 𝑝0)2 − 4𝑞0), 𝑎 =

1

2𝑥
(𝑝0 + 1 − √(1 − 𝑝0)2 − 4𝑞0)  (4.42) 

 

For these specific functions, the integrals in the solution, i.e. Eq. (3.3), are performed with ease finally yielding  

 

𝑦 = 𝑐1𝑥−
1

2
(𝑝0−1−√(1−𝑝0)2−4𝑞0) + 𝑐2𝑥−

1

2
(𝑝0−1+√(1−𝑝0)2−4𝑞0)

  (4.43) 

 

which is the solution of the general Cauchy-Euler equation((1 − 𝑝0)2 − 4𝑞0 ≠ 0). For the specific example of  

 

𝑦 +
2

𝑥
𝑦 −

6

𝑥2 𝑦 = 0  (4.44) 

 

p0=2, q0=-6, and the solution is from (4.43)  

 

𝑦 = 𝑐1𝑥2 + 𝑐2𝑥−3   (4.45) 

 

Example 4.2.2  

Consider the differential equation 

 

𝑦 + 2𝑥𝑦 + (𝑥2 + 1)𝑦 = 0  (4.46) 

 

For the application of the core-shell approach, the decomposed operator is  

 
(𝐷 + 𝑥)(𝐷 + 𝑥)𝑦 = 0  (4.47) 

 

with  

 

𝑎 = 𝑥, 𝑏 = 𝑥  (4.48) 

 

Equation (3.3) yields  

𝑦 = 𝑐1𝑥𝑒−𝑥2/2 + 𝑐2𝑒−𝑥2/2   (4.49) 

 

In the previous two examples outlined above, the equation is given and the solution is found from the formula of Theorem 3.1. 

Indeed, variable coefficient second order equations for which explicit analytical solutions exist are rare and they correspond to 

a(x) and b(x) functions that can be integrated analytically in equation (3.3). For instructors, when designing new problems which 

possesses an explicit analytical solution, the algorithm will be  

i) Select suitable a(x) and b(x) so that (3.3) is integrable. 

ii) Express the equation in the operator notation (𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦 = 0.  

iii) Finally write the solution employing (3.3). 

 

Example 4.2.3  

The following equation which has an analytical solution is extracted starting by selecting 

 

𝑎 = 𝑥, 𝑏 =
1

𝑥
 (4.50) 

 

which are functions that can be easily integrable. The corresponding equation is  

 

(𝐷 + 𝑥) (𝐷 +
1

𝑥
) 𝑦 = 𝑦 + (

1

𝑥
+ 𝑥) 𝑦 + (1 −

1

𝑥2) 𝑦 = 0  (4.51) 

 

and the solution is retrieved from (3.3)  

 

𝑦 =
1

𝑥
(𝑐1𝑒−𝑥2/2 + 𝑐2)   (4.52) 

 

Example 4.2.4  

If 𝑎 = 𝑐𝑜𝑠𝑥, 𝑏 = 𝑐𝑜𝑠𝑥 (4.53) 

which can be easily integrable, the corresponding equation is  

 

(𝐷 + 𝑐𝑜𝑠𝑥)(𝐷 + 𝑐𝑜𝑠𝑥)𝑦 = 𝑦 + 2𝑐𝑜𝑠𝑥𝑦 + (𝑐𝑜𝑠2𝑥 − 𝑠𝑖𝑛𝑥)𝑦 = 0  (4.54) 

and the solution is  
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𝑦 = 𝑒−𝑠𝑖𝑛𝑥(𝑐1𝑥 + 𝑐2)   (4.55) 

 

Functions a(x) and b(x) may be imaginary also. Note the following example 

 

Example 4.2.5 

 

Consider the differential equation 

 

𝑦 −
1

𝑥
𝑦 + 4𝑥2𝑦 = 0  (4.56) 

 

for which  

 

𝑎 + 𝑏 = −
1

𝑥
, 𝑏 + 𝑎𝑏 = 4𝑥2  (4.57) 

 

Eliminating a(x) between the equations  

 

𝑏 −
1

𝑥
𝑏 − 𝑏2 = 4𝑥2  (4.58) 

 

for which the solutions are complex 

 

𝑎 = −
1

𝑥
− 2𝑖𝑥, 𝑏 = 2𝑖𝑥  (4.59) 

 

The decomposed form is 

  

(𝐷 −
1

𝑥
− 2𝑖𝑥) (𝐷 + 2𝑖𝑥)𝑦 = 0  (4.60) 

 

with the solution retrieved from (3.3) by redefining the constants 

 

𝑦 = 𝑐1𝑐𝑜𝑠𝑥2 + 𝑐2𝑠𝑖𝑛𝑥2   (4.61) 

 

Third Order Linear Equations 

Third order equations with variable coefficients can be solved with a similar approach as presented in the previous sections. For 

the third order equations, the following theory can be proposed 

 

Theorem 5.1 

For the variable coefficient homogenous third order linear differential equation  

 

𝑦 + 𝑝(𝑥)𝑦 + 𝑞(𝑥)𝑦 + 𝑟(𝑥)𝑦 = 0  (5.1) 

 

if the differential operator can be expressed in the core-shell form 

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))(𝐷 + 𝑐(𝑥))𝑦 = 0  (5.2) 

 

where D=d/dx, then the general solution is of the below form  

 

𝑦(𝑥) = 𝑐1𝑒− ∫ 𝑐(𝑥)𝑑𝑥 ∫(𝑒∫(𝑐(𝑥)−𝑏(𝑥))𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥 𝑑𝑥)𝑑𝑥 + 𝑐2𝑒− ∫ 𝑐(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑐(𝑥)−𝑏(𝑥))𝑑𝑥𝑑𝑥 + 𝑐3𝑒− ∫ 𝑐(𝑥)𝑑𝑥  (5.3) 

 

where 

𝑝(𝑥) = 𝑎 + 𝑏 + 𝑐  (5.4) 

 

𝑞(𝑥) = 2𝑐 + 𝑏 + 𝑎𝑏 + 𝑐(𝑎 + 𝑏)  (5.5) 

 

𝑟(𝑥) = 𝑐 + (𝑎 + 𝑏)𝑐 + (𝑏 + 𝑎𝑏)𝑐  (5.6) 

 

Proof 

The embedded equation  

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))(𝐷 + 𝑐(𝑥))𝑦1 = 0  (5.7) 

 

can be divided into core and shell parts 

 

(𝐷 + 𝑎(𝑥))(𝐷 + 𝑏(𝑥))𝑦2 = 0 (Shell Equation)  (5.8) 
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(𝐷 + 𝑐(𝑥))𝑦1 = 𝑦2 (Core Equation)  (5.9) 

 

The solution of the shell equation was already given in Theorem 3.1 

 

𝑦2 = 𝑐1𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑏(𝑥)𝑑𝑥  (5.10) 

 

Hence, one needs to solve the core equation 

 

(𝐷 + 𝑐(𝑥))𝑦1 = 𝑐1𝑒− ∫ 𝑏(𝑥)𝑑𝑥 ∫ 𝑒∫(𝑏(𝑥)−𝑎(𝑥))𝑑𝑥𝑑𝑥 + 𝑐2𝑒− ∫ 𝑏(𝑥)𝑑𝑥  (5.11) 

 

The equation is a linear non-homogenous first order equation which can be solved by the standard integrating factor method 

yielding (5.3). The straightforward calculation of the operator form (5.2) and comparison with the original equation (5.1) yields 

the definitions given in (5.4)-(5.6) 

The idea can easily be generalized to arbitrary order of linear equations with variable coefficients. However, the functional 

relationships of the decomposed operators, i.e. Eqs (5.4)-(5.6) would become more and more complex as the order increases.  

 

Example 5.1 

Consider the differential equation 

 

𝑦 + 3𝑥𝑦 + 3(𝑥2 + 1)𝑦 + 𝑥(𝑥2 + 3)𝑦 = 0  (5.12) 

 

for which  

 

3𝑥 = 𝑎 + 𝑏 + 𝑐 (5.13) 

 

3(𝑥2 + 1) = 2𝑐 + 𝑏 + 𝑎𝑏 + 𝑐(𝑎 + 𝑏)  (5.14) 

 

𝑥(𝑥2 + 3) = 𝑐 + (𝑎 + 𝑏)𝑐 + (𝑏 + 𝑎𝑏)𝑐  (5.15) 

 

The solution is 

 

𝑎 = 𝑥, 𝑏 = 𝑥, 𝑐 = 𝑥  (5.16) 

 

The decomposed form is 

  
(𝐷 + 𝑥)(𝐷 + 𝑥)(𝐷 + 𝑥)𝑦 = 0 (5.17) 

 

with the solution an immediate consequence of (5.3)  

 

𝑦 = 𝑒−𝑥2/2(𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3)  (5.18) 

 

Example 5.2 

Consider the differential equation 

 

𝑦 + 3𝑠𝑖𝑛𝑥𝑦 + 3(𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠𝑥)𝑦 + (3𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛3𝑥 − 𝑠𝑖𝑛𝑥)𝑦 = 0 (5.19) 

 

The functions of the decomposed operators satisfy  

 

3𝑠𝑖𝑛𝑥 = 𝑎 + 𝑏 + 𝑐  (5.20) 

 

3(𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠𝑥) = 2𝑐 + 𝑏 + 𝑎𝑏 + 𝑐(𝑎 + 𝑏)  (5.21) 

 

3𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛3𝑥 − 𝑠𝑖𝑛𝑥 = 𝑐 + (𝑎 + 𝑏)𝑐 + (𝑏 + 𝑎𝑏)𝑐   (5.22) 

 

The solutions are 

 

𝑎 = 𝑠𝑖𝑛𝑥, 𝑏 = 𝑠𝑖𝑛𝑥, 𝑐 = 𝑠𝑖𝑛𝑥 (5.23) 

 

The decomposed form is 

 
(𝐷 + 𝑠𝑖𝑛𝑥)(𝐷 + 𝑠𝑖𝑛𝑥) (𝐷 + 𝑠𝑖𝑛𝑥) 𝑦 = 0  (5.24) 

 

with the final solution from (5.3)  
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𝑦 = 𝑒𝑐𝑜𝑠𝑥(𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3) (5.25) 

 

Note that, for third order equations, solutions of (5.4)-(5.6) to determine a, b and c might not be trivial for most of the cases. If 

found, there is no guarantee that the integrals can be evaluated in closed form solutions in (5.3). This explains the rarity of the 

analytical solutions for variable coefficient equations.  

 

Suggestions for Further Research 

Some research topics regarding the core-shell approach may be proposed:  

 The method of undetermined coefficients for finding particular solutions of the linear differential equations can be re-

interpreted within the context of core-shell approach.  

 The perturbation solutions can be re-interpreted within the core-shell approach.  

 The inner and outer expansions in a boundary layer type equation (singular perturbation problems) can be re-interpreted 

within the core-shell approach.  

 The calculation of symmetries of the differential equations and constructing the exact solutions from the symmetries can be 

re-interpreted within the core-shell approach. 

 New numerical algorithms based on the formulations of the core-shell approach may be developed.  

 

Except the first one, which is a topic of the fundamental course on differential equations, others may be given to advanced senior 

graduate students as research projects.  

 

Concluding Remarks 

A new approach to the teaching of differential equations are given which is named as the core-shell approach. Most of the well-

established techniques in search of analytical solutions can be re-interpreted within the context of the new approach. This might 

improve the understanding of the differential equations and their solutions. The formalism given in the text for linear differential 

equations may be useful for instructors to design new differential equations possessing exact solutions. It is shown that if a 

differential equation possesses an exact solution, then some specific integrals associated with the functions appearing in the 

operators must be integrable. Finally, some further topics are suggested for instructors as research projects to be assigned to the 

undergraduate students.  
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