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Abstract 

This investigation examines the dynamic buckling of an imperfect cubic model elastic structure trapped by 

a time-dependent but slowly varying oscillatory load applied just after the initial time. Besides its 

oscillatory nature, the amplitude of the load is assumed to be also strictly slowly varying dynamically and 

has right hand derivatives of all orders evaluated at the initial time. A multi-timing perturbation approach 

is adopted in asymptotic expansions of the variables. All results are thus asymptotic in nature. In the final 

analysis, a simple result for determining the dynamic buckling is obtained. 
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Introduction 

Investigations into dynamic buckling of structures have received accelerated progress in the past 

fifty years, yet so much seems yet to be investigated or explored. In this analysis, we beam our 

search light on a loading history that is dynamically slowly varying and oscillatory in nature. 

The load amplitude which is also slowly varying is explicitly time-dependent, continuous, 

monotone-decreasing and infinitely differentiable at the initial time. 

To our knowledge, Kuzmak [1] first propounded the general asymptotic theory for solving 

nonlinear second order differential equations with variable coefficients.  

Later works include investigations by Luke [2], Kevorkian [3], Kevorkian and Li [4], Boslly [5] and 

Kroll et al [6], among others. 

We recall that Ozoigbo et al. [7] analysed a pre-statically loaded nonlinear cubic structure 

pressurized by an explicitly time dependent slowly varying load while Ozoigbo and Ette [8] 

investigated the perturbation approach to dynamic buckling of a statically pre-loaded but 

viscously damped elastic structure. Similar investigations are those of Ette et al [9-12] and 

Amazigo and Ette [13], where similar perturbation and asymptotic analysis were adopted. The 

numerical approach adopted by Kolakowski [14], Simitses [16-17], Tabiei et al. [18], Groh and Croll 
[18] among others, are similarly insightful and could provide a comparative analysis.  

 

Formulation of the Problem 

 

 
 

Fig 1: Simple Cubic Model Structure 
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The elastic cubic model structure (Fig. 1) considered in this work was first studied by Budiansky [19] and Hutchinson and Budiansky 
[20] and has continued to serve as a generalized mathematical model of most physical elastic structures encountered in engineering 

practices. 

The system consists of a two-arm simple mechanical arrangement, which has two elastic rods, each arm of length L, arranged as in 

the figure and carrying a mass M at their meeting point while the ensuring vertical motion is restrained by a string whose rigidity 

follows a cubic law. 

On the spring, the mass is affected by the reaction force given by 

 

𝐹𝑆 = 𝐾𝐿 (
𝑋

𝐿
− 𝑏 (

𝑋

𝐿
)

3

) , 𝐾 > 0, 𝛽 > 0 

 

where, K is the spring constant and 
𝑋

𝐿
 is the additional displacement from equilibrium position. As in the Fig.1, 

𝑋

𝐿

̅
 is the initial 

displacement serving as the initial imperfection. The angle 𝜃 is assumed very small such that cos 𝜃 ≈ 1, sin 𝜃 ≈ 𝜃. Letting 𝑄 be the 

tension on each arm of the rod, we have 𝑄 cos 𝜃 = 𝑃(𝑇). Consequently, the equation of motion is 

 

𝑀
𝑑2

𝑑𝑇2
(

𝑋

𝐿
) + 𝐾𝐿 (1 −

2𝑃(𝑇)

𝐾𝐿2
) (

𝑋

𝐿
) − 𝑏𝐾𝐿 (

𝑋

𝐿
)

3

= 2𝑃(𝑇) (
�̅�

𝐿
) 

 

The following are the nondimensional quantities: 

 

𝜉 =
𝑋

𝐿
 , 𝜉̅ =

�̅�

𝐿
 , �̂� = 𝑇√

𝐾𝐿

𝑀
 , 𝜆 =

2𝑃(0)

𝐾𝐿
,

𝑃(𝑇)

𝑃(0)
= 𝑓(𝛿�̂�) cos 𝛿�̂�, 

0 < 𝜆 < 1, 0 < 𝜉̅ < 1, 𝑃(0) ≠ 0, 

 

Thus, the governing nondimensional equation of motion follows in the form 

 
𝑑2𝜉

𝑑�̂�2 + (1 − 𝜆𝑓(𝛿�̂�) cos 𝛿�̂�)𝜉 − 𝑏𝜉3 = 𝜆𝜉�̅�(𝛿�̂�) cos 𝛿�̂� , �̂� > 0           (1) 

 

𝜉(0) =
𝑑𝜉(0)

𝑑�̂�
= 0.               (2) 

 

Here, b>0 serves as the imperfection sensitivity parameter, 𝜆 is the amplitude of the load 𝑓(𝛿�̂�) cos 𝛿�̂� while 𝜉(�̂�) is the displacement 

as a function of time �̂� and our aim is to determine a certain value of the load parameter 𝜆, called the dynamic buckling load upon 

which the structure buckles dynamically. As in Ozoigbo [7], the dynamic buckling load is defined as the highest value of load 

parameter for the displacement 𝜉(�̂�) to be bounded and is obtained from the condition 

 
𝑑𝜆

𝑑𝜉𝑎
= 0                  (3) 

 

where 𝜉𝑎 is the maximum displacement as a function of time. 

The problem (1) and (2) is nonlinear with dynamically slowly varying oscillatory coefficients which will now be solved using multi-

timing regular perturbations in asymptotic expansions involving the small parameters 𝜉 ̅and 𝛿, where 𝜉 ̅is the nondimensional initial 

displacement. 

 

Perturbations and Asymptotic Expansions 

For the sake of clarity, we again rewrite (1) and (2) as 

 

𝑑2𝜉

𝑑�̂�2
+ (1 − 𝜆𝑓(𝛿�̂�) cos 𝛿�̂�)𝜉 − 𝑏𝜉3 = 𝜆𝜉�̅�(𝛿�̂�) cos 𝛿�̂� , �̂� > 0, 𝑏 > 0 

𝜉(0) =
𝑑𝜉(0)

𝑑�̂�
= 0, 0 < 𝛿 < 1, 0 < 𝜉̅ < 1, 

𝑓(0) = 1, |𝑓(𝛿�̂�)| < 1, �̂� > 0 

 

Let 

 

𝜏 = 𝛿�̂�,                    (4) 

 
𝑑𝑡̅

𝑑�̂�
= (1 −  𝜆𝑓(𝛿�̂�) cos 𝛿�̂�)

1

2 = (1 −  𝜆𝑓(𝜏) cos 𝜏)
1

2                

  (5) 

 

Further, let 

 

𝑡 = 𝑡̅ +
1

𝛿
(𝜉̅2 𝜇2(𝜏) + 𝜉̅3 𝜇3(𝜏) + ⋯ )                (6) 
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𝜇𝑖(0) = 0, 𝑖 = 2, 3, …                    (7) 

 

Now let 

  𝜉(�̂�) = 𝜂(𝑡, 𝜏 )                     (8) 

 

Hence, 

 
𝑑𝜉

𝑑�̂�
=

𝜕𝜂

𝜕𝑡

𝜕𝑡

𝜕𝑡̅

𝑑𝑡̅

𝑑�̂�
+

𝜕𝜂

𝜕𝑡

𝜕𝑡

𝜕𝜏

𝑑𝜏

𝑑�̂�
+

𝜕𝜂

𝜕𝜏

𝑑𝜏

𝑑�̂�
 

=(1 −  𝜆𝑓(𝜏) cos 𝜏)
1

2𝜂𝑡 + (𝜇′2𝜉̅2 + 𝜇′3𝜉̅3 + ⋯ )𝜂𝑡 + 𝛿𝜂𝜏           (9) 

 

where, 𝜂𝑡 =
𝜕𝜂

𝜕𝑡
, 𝜇𝑖

′ =
𝑑𝜇𝑖

𝑑𝜏
 , 𝜂𝜏 =

𝜕𝜂

𝜕𝜏
 , 𝑖 = 2, 3, … . 

 

Thus, 

 

𝑑2𝜉

𝑑�̂�2
= (1 −  𝜆𝑓 cos 𝜏)𝜂𝑡𝑡 + (𝜇2

′ 𝜉̅2 + 𝜇3
′ 𝜉̅3 + ⋯ )

2
𝜂𝑡𝑡 + 𝛿2𝜂𝜏𝜏 + 2𝛿(𝜇2

′ 𝜉̅2 + 𝜇3
′ 𝜉̅3 + ⋯ )𝜂𝑡𝜏 

+2(1 −  𝜆𝑓 cos 𝜏)
1

2(𝜇2
′ 𝜉̅2 + 𝜇3

′ 𝜉̅3 + ⋯ )𝜂𝑡𝑡 + 2𝛿(1 −  𝜆𝑓 cos 𝜏)
1

2𝜂𝑡𝜏 

+𝛿(𝜇2
′′𝜉̅2 + 𝜇3

′′𝜉̅3 + ⋯ )𝜂𝑡 −
𝛿𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)

2(1− 𝜆𝑓 cos 𝜏)
1
2

𝜂𝑡              (10) 

 

Therefore, substituting (9) and (10) into (1) and (2) and simplifying yields 

 

𝜂𝑡𝑡 +
(𝜇2

′ 𝜉̅2 + 𝜇3
′ 𝜉̅3 + ⋯ )

2
𝜂𝑡𝑡

𝐹
+

𝛿2𝜂𝜏𝜏

𝐹
+

2(𝜇2
′ 𝜉̅2 + 𝜇3

′ 𝜉̅3 + ⋯ )𝜂𝑡𝑡

𝐹
1

2

+
2𝛿(𝜇2

′ 𝜉̅2 + 𝜇3
′ 𝜉̅3 + ⋯ )𝜂𝑡𝜏

𝐹
 

+
2𝛿𝜂𝑡𝜏

𝐹
1
2

−
𝛿𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)

𝐹
3
2

𝜂𝑡 +
𝛿(𝜇2

′ �̅�2+𝜇3
′ �̅�3+⋯ )𝜂𝑡

𝐹
+ 𝜂 −

𝑏𝜂3

𝐹
=

𝜆�̅�𝑓 cos 𝜏

𝐹
          (11) 

 

where, 

 

𝐹 = (1 −  𝜆𝑓 cos 𝜏),  𝐹(0) = (1 −  𝜆)                (12) 

Thus, the original problem in �̂� now becomes a two-timing problem in t and 𝜏. 

Let, 

 

𝜉(�̂�) ≡ 𝜂(𝑡, 𝜏 ) = ∑ ∑ 𝜁(𝑖,𝑗)(𝑡, 𝜏)𝜉̅𝑖𝛿𝑗∞
𝑗=0

∞
𝑖=1                 (13) 

 

where the (𝑖, 𝑗) in 𝜁(𝑖,𝑗) are not powers but superscripts. 

Substituting (13) in (11) and (12), and equating coefficients of 𝜉̅𝑖𝛿𝑗 we have: 

 

𝑂(𝜉)̅: 𝜁𝑡𝑡
10 + 𝜁10 = 𝐵(𝜏) =

𝜆𝑓 cos 𝜏

𝐹(𝜏)
                   (14) 

𝑂(𝜉�̅�): 𝜁𝑡𝑡
11 + 𝜁11 =

−2𝜁𝑡𝜏
10

𝐹
1
2

+ 
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)

2𝐹
3
2

 𝜁𝑡
10                (15) 

 

𝑂(𝜉�̅�2): 𝜁𝑡𝑡
12 + 𝜁12 =

−2𝜁𝑡𝜏
11

𝐹
1
2

+  
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)

2𝐹
3
2

 𝜁𝑡
11 −

𝜁𝜏𝜏
10

𝐹
              (16) 

 

𝑂(𝜉̅3): 𝜁𝑡𝑡
30 + 𝜁30 =

−2𝜇2
′ 𝜁𝑡𝑡

10

𝐹
1
2

+
𝑏(𝜁10)

3

𝐹
                  (17) 

 

𝑂(𝜉̅3𝛿): 𝜁𝑡𝑡
31 + 𝜁31 =

−2𝜇2
′ 𝜁𝑡𝑡

11

𝐹
1
2

+
3𝑏(𝜁10)

2
𝜁11

𝐹
−

2𝜇2
′ 𝜁𝑡𝜏

10

𝐹
−

2𝜁𝑡𝜏
30

𝐹
1
2

+
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝜁𝑡

30

2𝐹
3
2

−  
𝜇2

′′𝜁𝑡
10

𝐹
       (18) 

𝑂(𝜉̅3𝛿2): 𝜁𝑡𝑡
32 + 𝜁32 =

𝜁𝑡𝜏
30

𝐹
−

2𝜇2
′ 𝜁𝑡𝜏

11

𝐹
−

2𝜇2
′ 𝜁𝑡𝑡

12

𝐹
1
2

−
2𝜁𝑡𝜏

31

𝐹
1
2

+
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝜁𝑡

31

2𝐹
3
2

 −
𝜇2

′′𝜁𝑡
11

𝐹
 

+
3𝑏[(𝜁10)

2
𝜁12+(𝜁11)

2
𝜁10]

𝐹
               (19) 

 

The initial conditions are: 

 

𝜁(𝑖,𝑗)(0,0) = 0, 𝑖 = 1,2,3, … , 𝑗 = 0,1,2, …                (20) 

 

𝑂(𝜉)̅: 𝜁𝑡
10 = 0                       (21) 
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𝑂(𝜉̅𝛿): 𝜁𝑡
11(0,0) +

𝜁𝜏
10(0,0)

(1− 𝜆)
1
2

= 0,                   (22) 

 

𝑂(𝜉̅𝛿2): 𝜁𝑡
12(0,0) +

𝜁𝜏
11(0,0)

(1− 𝜆)
1
2

= 0,                    (23) 

 

𝑂(𝜉̅3): 𝜁𝑡
30(0,0) +

𝜇2
′ (0)𝜁𝑡

10(0,0)

(1− 𝜆)
1
2

= 0,                  (24) 

 

𝑂(𝜉̅3𝛿): 𝜁𝑡
31(0,0) +

𝜇2
′ (0)𝜁𝑡

11(0,0)+𝜁𝜏
30(0,0)

(1− 𝜆)
1
2

= 0,               (25) 

 

𝑂(𝜉̅3𝛿2): 𝜁𝑡
32(0,0) +

𝜇2
′ (0)𝜁𝑡

12(0,0)+𝜁𝜏
31(0,0)

(1− 𝜆)
1
2

= 0,               (26) 

etc. 

 

Solution of the System of Perturbation Equations 

The solution of (14) subject to (20) and (21) is: 

 

𝜁10(𝑡, 𝜏) = 𝛼10(𝜏) cos 𝑡 + 𝛽10(𝜏) sin 𝑡 + 𝐵(𝜏)                (27a) 

 

   𝛼10(0) = −𝐵(0) =
−𝜆

1−𝜆
 , 𝛽10(0) = 0                  (27b) 

 

Substituting into (15) and simplifying gives 

 

𝜁𝑡𝑡
11 + 𝜁11 =

2 (𝛼10
′ sin 𝑡−𝛽10

′ cos 𝑡)

𝐹
1
2

+  
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)(−𝛼10 sin 𝑡+𝛽10 cos 𝑡)

𝐹
3
2

            (28a) 

 

To ensure a uniformly valid solution in t, we equate to zero, in (28a), the coefficients of cos 𝑡 and sin 𝑡 and respectively obtain: 

 

𝛽10
′ −

𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛽10

4𝐹
= 0                  (28b) 

 

and 

 

𝛼10
′ −

𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛼10

4𝐹
= 0                  (28c) 

 

The solutions to (28b, c) are 

 

𝛽10(𝜏) = 0, 𝛼10(𝜏) =
𝐵(0)

(1− 𝜆𝑓 cos 𝜏)
1
4

                  (28d) 

 

Thus, we conclude that 

 

𝜁10(𝑡, 𝜏) = 𝛼10(𝜏) cos 𝑡 + 𝐵(𝜏)                  (29) 

 

Solving the remaining equation in (28a) gives 

 
𝜁11(𝑡, 𝜏) = 𝛼11(𝜏) cos 𝑡 + 𝛽11(𝜏) sin 𝑡 

 

𝛼11(0) = 0 , 𝛽11(0) = −
𝛼10

′ (0)+𝐵′(0)

(1− 𝜆)
1
2

=
−𝐵(0)𝑓′(0)(4−𝜆)

4 (1− 𝜆)
3
2

             (30a) 

 

where 

 

𝛼10
′ (0) =

−𝐵2(0)𝑓′(0)

4 
, 𝐵′(0) =

𝐵(0)𝑓′(0)

(1− 𝜆)
                 (30b) 

 

Next, substituting into (16) and simplifying gives 

 

𝜁𝑡𝑡
12 + 𝜁12 =

−2 (−𝛼11
′ sin 𝑡+𝛽11

′ cos 𝑡)

𝐹
1
2

+  
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)(−𝛼11 sin 𝑡+𝛽11 cos 𝑡)

𝐹
3
2

−
(𝛼10

′ cos 𝑡+𝐵′′)

𝐹
       (31) 
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To ensure a uniformly valid solution in t, we equate to zero in (31) the coefficients of cos 𝑡 and sin 𝑡 and obtain 

 

𝛽11
′ −

𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛽11

4𝐹
=

𝛼10
′′

2 𝐹
1
2

                 (32a) 

 

and 

 

𝛼11
′ −

𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛼11

4𝐹
= 0                   (32b) 

 

Solving (32a, b) subject to (30a) gives 

𝛽11(𝜏) = (1 −  𝜆𝑓 cos 𝜏)−
1

4 [𝛽11(0) −
1

2
∫

𝛼11
′′ (𝑠)𝑑𝑠

𝐹
1
4(𝑠)

𝜏

0
]              (33a) 

 

𝛼11(𝜏) = 0                       (33b) 

The remaining equation in (31) is now solved to get 

 

𝜁12(𝑡, 𝜏) = 𝛼12(𝜏) cos 𝑡 + 𝛽12(𝜏) sin 𝑡 −
𝐵′′

𝐹
 

 

  𝛼12(0) =
𝐵′′(0)

𝐹
 , 𝛽12(0) = 0                    (34) 

 

Meanwhile, we conclude from (33a, b) that 

 

𝜁11(𝑡, 𝜏) = 𝛽11(𝜏) sin 𝑡                   (35) 

 

and note that 

 

    𝐵′′(0) =
[(1− 𝜆)(1+ 𝜆3)+2𝜆2𝑓′2

(0)+𝜆(1− 𝜆)𝑓′′(0)]

(1− 𝜆)3               (36) 

 

Substituting into (17) and simplifying gives 

 

𝜁𝑡𝑡
30 + 𝜁30 =

2𝜇2
′ 𝛼10 cos 𝑡

𝐹
1
2

+
𝑏

𝐹
[(

3𝐵𝛼10
2

2
+ 𝐵3) + 3 (

𝛼10
3

4
+ 𝛼10𝐵2) cos 𝑡 +

3𝐵𝛼10
2 cos 2𝑡

2
+

𝛼10
3 cos 3𝑡

4
]      (37) 

 

To ensure a uniformly valid solution in t, we equate to zero in (37) the coefficients of cos 𝑡 and sin 𝑡 and obtain 

 

𝜇2
′ (𝜏) =

−3𝑏(
𝛼10

2

4
+𝐵2)

2 𝐹
1
2

                     (38a) 

 

where 

 

𝜇2
′ (0) =

−15𝑏𝐵2(0)

8 (1− 𝜆)
1
2

                     (38b) 

 

The remaining equation in (37) is now solved to get 

 

𝜁30(𝑡, 𝜏) = 𝛼30(𝜏) cos 𝑡 + 𝛽30(𝜏) sin 𝑡 +
𝑏

𝐹
[(

3𝐵𝛼10
2

2
+ 𝐵3) −

𝐵𝛼10
2  cos 2𝑡

2
−

𝛼10
3 cos 3𝑡

32
]        (39) 

 

𝛼30(0) =
−65 𝐵3(0)

32 (1− 𝜆)
 , 𝛽30(0) = 0                 (40) 

 

The following simplifications are necessary in the substitution into (18) which soon follows: 

 

(𝜁10)2 = (
𝛼10

2

2
+ 𝐵2) + 2𝛼10𝐵 cos 𝑡 +

𝛼10
2  cos 2𝑡

2
 

 

(𝜁10)2𝜁11 = 𝛽11 [(
𝛼10

2

4
+ 𝐵2) sin 𝑡 + 𝛼10𝐵 sin 2𝑡 +

𝛼10
2  cos 2𝑡

2
+

𝛼10
2 sin 3𝑡

4
]         (41) 

Substituting into (18) and simplifying, we get 
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𝜁𝑡𝑡
31 + 𝜁31 =

2𝜇2
′ 𝛽11 sin 𝑡

𝐹
1

2

+
3𝑏𝛽11

𝐹
[(

𝛼10
2

4
+ 𝐵2) sin 𝑡 + 𝛼10𝐵 sin 2𝑡 +

𝛼10
2 sin 3𝑡

4
] +

2𝜇2
′ 𝛼10

′ sin 𝑡

𝐹
 

−
2

𝐹
1

2

[−𝛼30
′ sin 𝑡 + 𝛽30

′ cos 𝑡 + (
𝐵𝛼10

2

𝐹
)

′

sin 2𝑡 +
3

32
(

𝛼10
3

𝐹
)

′

sin 3𝑡] 

+
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)

2 𝐹
1
2

[−𝛼30 sin 𝑡 + 𝛽30 cos 𝑡 +
𝑏

𝐹
 (𝐵𝛼10

2 sin 2𝑡 +
3𝛼10

3 sin 3𝑡

32
)] +

𝜇2
′′𝛼10 sin 𝑡

𝐹
     (42) 

 

To ensure a uniformly valid solution in t, we equate to zero, in (42), the coefficients of cos 𝑡 and sin 𝑡 and respectively obtain: 

 

cos 𝑡 : 
−2𝛽30

′

𝐹
1
2

+
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛽30

2 𝐹
1
2

= 0                 (43) 

 

sin 𝑡 : 
2𝜇2

′ 𝛽11

𝐹
1
2

+
3𝑏𝛽11(

𝛼10
2

4
+𝐵2)

𝐹
+

2𝛼30
′

𝐹
1
2

+
2𝜇2

′ 𝛼10
′

𝐹
−

𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛼30

2 𝐹
3
2

+
𝜇2

′′𝛼10

𝐹
= 0          (44) 

 

Solving (43) and (44) easily yields 

 

𝛽30(𝜏) ≡ 0, 𝛼30(𝜏) = (1 −  𝜆𝑓 cos 𝜏)−
1

4 [∫ (1 −  𝜆𝑓 cos 𝜏)
1

4
𝜏

0
 𝐻1(𝑠)𝑑𝑠 + 𝛼30(0)]        (45) 

 

where 

 

𝐻1(𝜏) = −
1

2
[2𝜇2

′ 𝛽11 +
3𝑏𝛽11(

𝛼10
2

4
+𝐵2)

𝐹
1
2

+
𝜇2

′′𝛼10

𝐹
1
2

+
2𝜇2

′ 𝛼10
′

𝐹
]            (46) 

 

The remaining equation in (42) is re-arranged as 

 

𝜁𝑡𝑡
31 + 𝜁31 = 𝑅1(𝜏) sin 2𝑡 + 𝑅2(𝜏) sin 3𝑡                (47) 

 

𝜁31(0,0) = 0, 𝜁𝑡
31(0,0) +

𝜇2
′ (0)𝜁𝑡

11(0,0)+𝜁𝜏
30(0,0)

(1− 𝜆)
1
2

               (48) 

 

where 

𝑅1 =
3𝑏𝛽11𝐵𝛼10

𝐹
−

2𝑏(
𝐵𝛼10

2

𝐹
)

′

𝐹
1
2

+
𝑏𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝐵𝛼10

2

2𝐹
              (49a) 

 

𝑅2 =
3

4
(

𝑏𝛼10
2 𝛽11

𝐹
) −

3𝑏

16𝐹
(

𝛼10
3

𝐹
)

′

+
3𝑏𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛼10

3

64𝐹
3
2

              (49b) 

 

𝑅1(0) =
𝑏𝐵3(0)𝑓′(0)

2(1− 𝜆)
[

3(4−𝜆)

2(1− 𝜆)
3
2

+ (𝜆 −
2(2+3𝜆)

(1− 𝜆)
3
2

)]               (50a) 

 

𝑅2(0) =
3𝑏𝐵3(0)𝑓′(0)

16(1− 𝜆)
5
2

[
7−𝜆 (1− 𝜆)

1
2

4(1− 𝜆)
1
2

− (4 − 𝜆)]                 (50b) 

 

Solving (47) – (48) gives 

 

𝜁31(𝑡, 𝜏) = 𝛼31(𝜏) cos 𝑡 + 𝛽31(𝜏) sin 𝑡 −
𝑅1(𝜏) sin 2𝑡

3
−

𝑅2(𝜏) sin 3𝑡

8
           (51) 

 

where 

 

𝛼31(0) = 0, 𝛽31(0) +
𝑏

(1− 𝜆)
1
2

[
1

𝐹
{𝛼30 + (

3𝐵𝛼10
2

2
+ 𝐵3) −

𝐵𝛼10
2  

2
−

𝛼10
3

32
}]

′

|
𝜏=0

= 0        (52) 

 

It is however worthy of note that from (38a) 

 

𝜇2
′′(0) =

3𝑏𝐵2(0)𝑓′(0)(8+3 𝜆)

8(1− 𝜆)
3
2

.                   (53) 

 

The following simplification will be necessary in the substitution into (19) which follows shortly: 
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(𝜁10)2𝜁12 = {𝐵𝛼10𝛼12 −
𝐵′′

𝐹
(

𝛼10
2

4
+ 𝐵2)} + {(

𝛼10
2

4
+ 𝐵2) 𝛼12 +

𝛼10
2  𝛼12

4
−

2𝐵′′𝐵𝛼10

𝐹
} cos 𝑡 

+ {𝛽12 (
𝛼10

2

2
+ 𝐵2) −

𝛽12𝛼10
2

4
} sin 𝑡 + {𝐵𝛼10𝛼12 −

𝐵′′𝛼10
2

2𝐹
} cos 2𝑡 + 𝛽12𝐵𝛼10 sin 2𝑡 

+
𝛼10

2  𝛼12

4
cos 3𝑡 +

𝛼10
2  𝛽12

4
sin 3𝑡                (54) 

 

 (𝜁11)2𝜁10 =
𝐵𝛽11

2

2
+

𝛽11
2 𝛼10

4
cos 𝑡 −

𝐵𝛽11
2

2
cos 2𝑡 −

𝛽11
2 𝛼10

4
cos 3𝑡              (55) 

 

Substituting into (19) yields 

 

𝜁𝑡𝑡
32 + 𝜁32 =

1

𝐹
[ 𝛼30

′′ cos 𝑡 + 𝑏 {(

3

2
𝐵𝛼10

2 + 𝐵3

𝐹
)

′′

− (
𝐵𝛼10

2

2𝐹
)

′′

cos 2𝑡 − (
𝛼10

3

𝐹
)

′′

cos 3𝑡 −
2𝜇2

′ 𝛽11
′

𝐹
cos 𝑡 

+
2𝜇2

′

𝐹
1

2

( 𝛼12 cos 𝑡 + 𝛽12 sin 𝑡)}] −
2

𝐹
1

2

[−𝛼31
′ sin 𝑡 + 𝛽31

′ cos 𝑡 −
2𝑅1

′ cos 2𝑡

3
−

3𝑅2
′ cos 3𝑡

8
] 

+
𝜆(𝑓′ cos 𝜏 − 𝑓 sin 𝜏)

2𝐹
3

2

[−𝛼31 sin 𝑡 + 𝛽31 cos 𝑡 −
2𝑅1 cos 2𝑡

3
−

3𝑅2 cos 3𝑡

8
] −

2𝜇2
′ 𝛽11

′ cos 𝑡

𝐹
 

−
2𝜇2

′ 𝛽11 cos 𝑡

𝐹
+

3𝑏

𝐹
 {𝐵𝛼10𝛼12 −

𝐵′′

𝐹
(

𝛼10
2

4
+ 𝐵2)} + {(

𝛼10
2

4
+ 𝐵2) 𝛼12 +

𝛼10
2  𝛼12

4
−

2𝐵′′𝐵𝛼10

𝐹
} cos 𝑡 

+{𝛽12 (
𝛼10

2

2
+ 𝐵2) −

𝛽12𝛼10
2

4
} sin 𝑡 + {𝐵𝛼10𝛼12 −

𝐵′′𝛼10
2

2𝐹
} cos 2𝑡 + 𝛽12𝐵𝛼10 sin 2𝑡 

+
𝛼10

2  𝛼12

4
cos 3𝑡 +

𝛼10
2  𝛽12

4
sin 3𝑡 +

𝐵𝛽11
2

2
+

𝛽11
2 𝛼10

4
cos 𝑡 −

𝐵𝛽11
2

2
cos 2𝑡 −

𝛽11
2 𝛼10

4
cos 3𝑡      (56) 

 

𝜁32(0,0) = 0, 𝜁𝑡
32(0,0) +

𝜇2
′ (0)𝜁𝑡

12(0,0)+𝜁𝜏
31(0,0)

(1− 𝜆)
1
2

= 0              (57) 

 

To ensure a uniformly valid solution in t, we equate to zero, in (56), the coefficients of cos 𝑡 and sin 𝑡 and respectively obtain: 

 

cos 𝑡 : 
𝛼30

′′

𝐹
+

2𝜇2
′ 𝛽11

′ 𝑏

𝐹
−

2𝜇2
′ 𝛼12𝑏

𝐹
3

2

−
2𝛽31

′

𝐹
1

2

+
𝜆(𝑓′ cos 𝜏 − 𝑓 sin 𝜏)𝛽31

2𝐹
3

2

−
𝜇2

′ 𝛽11
′

𝐹
 

+
3𝑏

𝐹
 {(

𝛼10
2

2
+ 𝐵2) 𝛼12 +

𝛼10
2  𝛼12

4
−

2𝐵′′𝐵𝛼10

𝐹
} +

𝛽11
2 𝛼10

4
= 0            (58) 

sin 𝑡 : 
2𝛼31

𝐹
1
2

−
𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝛼31

2 𝐹
3
2

+
3𝑏𝛽12

𝐹
(

𝛼10
2

4
+ 𝐵2) = 0              (59) 

 

Solving (58), we get 

 

𝛽31(𝜏) = (1 −  𝜆𝑓 cos 𝜏)−
1

4 [∫ (1 −  𝜆𝑓 cos 𝜏)
1

4
𝜏

0
 𝐻2(𝑠)𝑑𝑠 + 𝛽31(0)]         (60) 

 

where 

 

𝐻2(𝜏) =
𝐹

1
2

2
 [

3𝑏

𝐹
 {(

𝛼10
2

2
+ 𝐵2) 𝛼12 +

𝛼10
2  𝛼12

4
−

2𝐵′′𝐵𝛼10

𝐹
} +

𝛽11
2 𝛼10

4
+

𝜇2
′ 𝛽11

′ 𝑏

𝐹
−

2𝜇2
′ 𝛼12𝑏

𝐹
3
2

−
𝜇2

′′𝐵

𝐹
]    (61) 

 

Similarly, the solution to (59) is 

 

𝛼31(𝜏) = (1 −  𝜆𝑓 cos 𝜏)−
1

4 [∫ (1 −  𝜆𝑓 cos 𝜏)
1

4
𝜏

0
 𝐻3(𝑠)𝑑𝑠 + 𝛽31(0)]         (62) 

 

𝐻3(𝜏) =
3𝑏𝛽12

2 𝐹
1
2

(
𝛼10

2

2
+ 𝐵2)                   (63) 

 

The remaining equation in (56) is now arranged as 

 

𝜁𝑡𝑡
32 + 𝜁32 = 𝑅3(𝜏) + 𝑅4 cos 2𝑡 + 𝑅5 sin 2𝑡 + 𝑅6 cos 3𝑡 + 𝑅7 sin 3𝑡           (64) 

where 

 

𝑅3 = −
𝑏

𝐹
 (

3𝐵𝛼10
2

2
+𝐵3

𝐹
)

′′

+
3𝑏

𝐹
 {𝐵𝛼10𝛼12 −

𝐵′′

𝐹
(

𝛼10
2

4
+ 𝐵2)}             (65a) 
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𝑅4 =
𝑏

2𝐹
 (

𝐵𝛼10
2

𝐹
)

′′

+
𝑅1

′

3 𝐹
1
2

−
2𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝑅1

3 𝐹
3
2

+
3𝑏

𝐹
(𝐵𝛼10𝛼12 −

𝐵′′𝛼10
2

2𝐹
) −

3𝑏𝐵𝛽11
2

2𝐹
         (65b) 

 

𝑅5 =
3𝑏𝐵𝛼10𝛽12

𝐹
                       (65c) 

 

𝑅6 =
𝑏

𝐹
 (

𝛼10
2

𝐹
)

′′

+
3𝑅2

′

4 𝐹
1
2

−
3𝜆(𝑓′ cos 𝜏−𝑓 sin 𝜏)𝑅2

8 𝐹
3
2

+
3𝑏𝛼10

2  𝛼12

𝐹
−

3𝑏𝛼10𝛽11
2

4𝐹
            (65d) 

 

𝑅7 =
3𝑏𝛽12𝛼10

2

4𝐹
                       (65e) 

 

On solving (64) with (65a – e), we have 

 

   𝜁32(𝑡, 𝜏) = 𝛼32(𝜏) cos 𝑡 + 𝛽32(𝜏) sin 𝑡 + 𝑅3 −
𝑅4 cos 2𝑡+𝑅5 sin 2𝑡

3
−

𝑅6 cos 3𝑡+𝑅7 sin 3𝑡

8
         (66a) 

 

𝛼32(0) = −𝑅3(0) −
𝑅4(0)

3
−

𝑅6(0)

8
                   (66b) 

 

𝛽32(0) = −
2𝑅5(0)

3
−

3𝑅7(0)

8
+

𝜇2
′ (0)𝜁𝑡

12(0,0)+𝜁𝜏
31(0,0)

(1− 𝜆)
3
2

= 0               (66c) 

 

We will also make use of the following terms. From (38a), 

 

𝜇2
′′(0) =

−3𝑏𝐵2(0)𝑓′(0)

2(1− 𝜆)
𝑅8(0)                   (67a) 

 

𝑅8(0) = (1 −  𝜆)
1

2 (
𝐵(0)

8
+

2

(1− 𝜆)
) +

5𝜆

(1− 𝜆)
1
2

                 (67b) 

 

By substituting into (46), we get 

 

𝐻1(0) = −
1

2
[2𝜇2

′ 𝛽11(0) +
15𝑏𝛽11(0)𝐵3(0)

4(1− 𝜆)
1
2

−
𝐵(0)𝜇2

′′

(1− 𝜆)
1
2

+
2𝜇2

′ 𝛼10
′

(1− 𝜆)
1
2

]             (68) 

 

Evaluating (44) at zero gives 

 

𝛼30
′ (0) = −

(1− 𝜆)
1
2

2
 [

2𝜇2
′ (0)𝛽11(0)

(1− 𝜆)
1
2

+
15𝑏𝛽11(0)𝐵3(0)

4(1− 𝜆)
+

2𝜇2
′ (0)𝛼10

′ (0)

(1− 𝜆)
−

𝜇2
′′(0)𝐵(0)

(1− 𝜆)
] +

𝜆𝑓′(0)𝛼30(0)

4(1− 𝜆)
       (69) 

 

Following (13), we can summarize the analysis so far as 

 

𝜂(𝑡, 𝜏 ) = 𝜉(̅𝜁10 + 𝛿𝜁11 + 𝛿2𝜁12 + ⋯ ) + 𝜉̅3(𝜁30 + 𝛿𝜁31 + 𝛿2𝜁32 + ⋯ ) + ⋯         (70) 

 

Values of Variables at maximum Displacement 

At maximum displacement 𝜂𝑎, we let the values of 𝑡, �̂� and 𝜏 to be 𝑡𝑎, �̂�𝑎 and 𝜏𝑎 respectively and let them be expanded asymptotically 

as 

 

𝑡𝑎 = 𝑡0 + 𝑡01𝛿 + 𝑡02𝛿2 + ⋯ 𝜉̅2(𝑡20 + 𝑡21𝛿 + 𝑡22𝛿2 + ⋯ ) + ⋯           (71a) 

 

�̂�𝑎 = �̂�0 + �̂�01𝛿 + �̂�02𝛿2 + ⋯ 𝜉̅2(�̂�20 + �̂�21𝛿 + �̂�22𝛿2 + ⋯ ) + ⋯           (71b) 

 

𝜏𝑎 = 𝛿�̂�𝑎 = 𝛿[�̂�0 + �̂�01𝛿 + �̂�02𝛿2 + ⋯ 𝜉̅2(�̂�20 + �̂�21𝛿 + �̂�22𝛿2 + ⋯ )] + ⋯         (71c) 

 

The condition for maximum displacement follows from (9) as 

 

𝜂𝑡 + (1 −  𝜆𝑓 cos 𝜏)−
1

2[ (𝜇2
′ 𝜉̅2 + 𝜇2

′ 𝜉̅2 + ⋯ )𝜂𝑡 + 𝛿𝜂𝜏] = 0            (72) 

 

Now, the expansion of each of the terms in (72), using (70) and (71a, b, c) follows as: 

 

𝜉�̅�𝑡
10 = 𝜉 ̅[𝜁𝑡

10 +{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ + 𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}𝜁𝑡𝑡
10 + 𝛿{�̂�0 + �̂�01𝛿 + ⋯ 

+𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ ) + ⋯ }𝜁𝑡𝜏
10 +

1

2
{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ + 𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}

2
𝜁𝑡𝑡𝑡

10  
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+𝛿2{�̂�01𝛿 + �̂�02𝛿2 + ⋯ + 𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ )}𝜁𝑡𝜏
10 + 2𝛿{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ 

+𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}{�̂�0 + �̂�01𝛿 + ⋯ +𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ )}𝜁𝑡𝑡𝜏
10 ] + ⋯        (73) 

 

𝜉�̅�𝜁𝑡
11 = 𝜉�̅�[𝜁𝑡

11 +{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ + 𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}𝜁𝑡𝑡
11 + 𝛿{�̂�0 + �̂�01𝛿 + ⋯ 

+𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ ) + ⋯ }𝜁𝑡𝜏
11 + ⋯ ]                 (74) 

 

𝜉̅3𝜁𝑡
30 = 𝜉̅3[𝜁𝑡

30 +{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ + 𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}𝜁𝑡𝑡
30 + 𝛿{�̂�0 + �̂�01𝛿 + ⋯ 

+𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ ) + ⋯ }𝜁𝑡𝜏
30 + ⋯ ]                (75) 

 

𝜉̅3𝛿𝜁𝑡
31 = 𝜉̅3𝛿[𝜁𝑡

31 +{𝑡01𝛿 + 𝑡02𝛿2 + ⋯ + 𝜉̅2(𝑡20 + 𝑡21𝛿 + ⋯ )}𝜁𝑡𝑡
31 + 𝛿{�̂�0 + �̂�01𝛿 + ⋯ 

+𝜉̅2(�̂�20 + �̂�21𝛿 + ⋯ ) + ⋯ }𝜁𝑡𝜏
31 + ⋯ ]                (76) 

 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉̅3𝜇2
′ 𝜁𝑡

10 = 𝜉̅3 [(1 −  𝜆)−
1

2 𝜇2
′ 𝜁𝑡

10 + (1 −  𝜆)−
1

2𝜇2
′ (0){𝑡01𝛿 + ⋯ }𝜁𝑡𝑡

10 + ⋯ 

+𝛿{�̂�0 + �̂�01𝛿 + ⋯ } ((1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜇2
′ 𝜁𝑡

10)
𝜏

+ ⋯ ]       (77) 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉̅3𝜇2
′ 𝜁𝑡

11 = 𝜉̅3𝛿 [(1 −  𝜆)−
1

2 𝜇2
′ 𝜁𝑡

11 + (1 −  𝜆)−
1

2𝜇2
′ (0){𝑡01𝛿 + ⋯ }𝜁𝑡𝑡

11 + ⋯ 

+𝛿{�̂�0 + �̂�01𝛿 + ⋯ } ((1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜇2
′ 𝜁𝑡

11)
𝜏

+ ⋯ ]       (78) 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉�̅�𝜁𝜏
10 = 𝜉�̅� [(1 −  𝜆)−

1

2 𝜁𝜏
10 + (1 −  𝜆)−

1

2{𝑡01𝛿 + ⋯ }𝜁𝑡𝜏
10 + ⋯ 

+𝛿{�̂�01𝛿 + ⋯ + 𝜉̅2(�̂�20 + ⋯ )} (
 𝜁𝜏

10

(1− 𝜆𝑓 cos 𝜏)
1
2

)
𝜏

+
1

2
{{𝑡01𝛿 + ⋯ + 𝜉̅2(𝑡20 + ⋯ )}

2 𝜁𝜏𝑡𝑡
10

(1− 𝜆)
1
2

+ ⋯ }]   (79) 

 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉�̅�2𝜁𝜏
11 = 𝜉�̅�2 [(1 −  𝜆)−

1

2 𝜁𝜏
11 + (1 −  𝜆)−

1

2{𝑡01𝛿 + ⋯ }𝜁𝑡𝜏
11 + ⋯ ]        (80) 

 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉̅3𝛿𝜁𝜏
30 = 𝜉̅𝛿2 [(1 −  𝜆)−

1

2 𝜁𝜏
30 + (1 −  𝜆)−

1

2{𝑡01𝛿 + ⋯ }𝜁𝑡𝜏
30 + ⋯ ]        (81) 

 

(1 −  𝜆𝑓 cos 𝜏)−
1

2 𝜉̅3𝛿2𝜁𝜏
31 = 𝜉̅𝛿2 [(1 −  𝜆)−

1

2 𝜁𝜏
31 + (1 −  𝜆)−

1

2{𝑡01𝛿 + ⋯ }𝜁𝑡𝜏
31 + ⋯ ]       (82) 

 

where (73) – (82) are evaluated at (𝑡0, 0). 

 

Now, substituting from (73) – (82) into (72) and equating the coefficients of 𝜉̅𝑖𝛿𝑗, we have: 

 

𝑂(𝜉̅): 𝜁𝑡
10 = 0                        (83) 

 

𝑂(𝜉̅𝛿): 𝑡01𝜁𝑡𝑡
10 + �̂�0𝜁𝑡𝜏

10 + 𝜁𝑡
11 +

𝜁𝜏
10

(1− 𝜆)
1
2

= 0,                 (84) 

 

𝑂(𝜉̅3): 𝑡20𝜁𝑡𝑡
10 + 𝜁𝑡

30 +
𝜇2

′ (0)𝜁𝑡
10

(1− 𝜆)
1
2

= 0,                 (85) 

 

𝑂(𝜉̅3𝛿): 𝑡21𝜁𝑡𝑡
10 + �̂�20𝜁𝑡𝜏

10 + 𝑡20𝜁𝑡𝑡
11 + 𝑡01𝜁𝑡𝑡

30 + �̂�0𝜁𝑡𝜏
30 + 𝜁𝑡

31 + 𝑡01𝑡20𝜁𝑡𝑡𝑡
10 +

𝜇2
′ (0)𝑡01𝜁𝑡𝑡

10

(1− 𝜆)
1
2

 

+�̂�0 [
𝜇2

′ 𝜁𝑡
10

(1− 𝜆𝑓 cos 𝜏)
1
2

]
𝜏

+
𝜇2

′ (0)𝜁𝑡
11+𝑡20𝜁𝑡𝜏

10+𝜁𝜏
30

(1− 𝜆)
1
2

= 0           (86) 

 

From (83), using (29), we get 

 

sin 𝑡0 = 0 ⟹  𝑡0 = 𝑛𝜋, 𝑛 = 1,2,3, … 

 

We take the least nontrivial value of 𝑡0, for the case 𝑛 = 1, and get 

 

𝑡0 = 𝜋                      (87) 

 

Substituting into (84), noting that 𝜁𝑡𝑡
10(𝑡, 0) = 0 we get 

𝑡01 = −
𝜁𝑡

11+(1− 𝜆)
−

1
2 𝜁𝜏

10

𝜁𝑡𝑡
10 =

𝑓′(0)

4(1− 𝜆)
[

4−𝜆

(1− 𝜆)
1
2

+ (4 + 𝜆)]              (88) 

 

Substituting into (85) easily yields 
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𝑡20 = 0                      (89) 

 

On substitution, most terms in (86) vanish, leaving 

 

𝑡21 = −
1

𝜁𝑡𝑡
10 [𝑡01𝜁𝑡𝑡

30 + 𝜁𝑡
31 +

𝜇2
′ (0) 𝑡01𝜁𝑡𝑡

10+𝜇2
′ (0)𝜁𝑡

11+𝜁𝜏
30

(1− 𝜆)
1
2

]|
(𝑡0,0)

            (90) 

 

etc. 

From (70), the non-vanishing terms, in the maximum displacement 𝜂(𝑡𝑎, 𝜏𝑎) can be expanded to get 

 

𝜂𝑎 = 𝜂(𝑡𝑎, 𝜏𝑎) = [𝜉 ̅(𝜁10 + 𝛿�̂�0𝜁𝜏
10 + ⋯ ) + 𝜉̅3 {𝜁30 + 𝛿(�̂�20𝜁𝜏

10 + �̂�0𝜁𝜏
30)} + ⋯ ]|

(𝑡0,0)
       (91) 

 

We note that 

 

𝜁𝜏
30(𝑡0, 0) =

𝑏𝐵3(0)𝑓′(0)

128(1− 𝜆)2 (496 − 179𝜆)                  (92a) 

 

𝜁𝜏
10(𝑡0, 0) =

𝐵(0)𝑓′(0)(4+ 𝜆)

4(1− 𝜆)
                     (92b) 

 

𝜁30(𝑡0, 0) =
4𝑏𝐵3(0)

(1− 𝜆)
                      (92c) 

 

Substituting (92a, b, c) into (91) and simplifying yields 

 

𝜂𝑎 = 2𝐵(0)𝜉̅ [1 +
𝛿𝑓′(0)(4+ 𝜆)

8(1− 𝜆)
+ ⋯ ] +

4𝑏𝐵3(0)�̅�3

(1− 𝜆)
[1 +

𝛿𝑓′(0)

16
{

�̂�20(4+ 𝜆)

𝐵2(0)
+

�̂�0(496−179𝜆)

32
} + ⋯ ]      (93) 

 

which can further be written as 

 

𝜂𝑎 = 𝜉�̅�1 + 𝜉̅3𝑓3 + ⋯                      (94a) 

 

𝑓1 = 2𝐵(0)(1 + 𝐴1𝑓′(0)𝛿 + ⋯ )                   (94b) 

 

𝐴1 =
(4+ 𝜆)

8(1− 𝜆)
                        (94c) 

 

𝑓3 =
4𝑏𝐵(0)

(1− 𝜆)
(1 + 𝐴3𝑓′(0)𝛿 + ⋯ )                   (94d) 

 

𝐴3 =
1

16
[

�̂�20(4+ 𝜆)

𝐵2(0)
+

�̂�0(496−179𝜆)

32
] + ⋯                 (94e) 

 

So far, the terms �̂�20 and �̂�0 appearing in (93) – (94e) are yet to be determined and are now determined by recourse to expansions of 

(5) and (6) as determined at their critical values. Thus, we have 

 
𝑑𝑡̅

𝑑�̂�
= (1 −  𝜆𝑓(𝛿�̂�) cos 𝛿�̂�)

1

2 = (1 −  𝜆)
1

2 [1 −
𝜆

2(1 −  𝜆)
{𝑓′(0)𝛿�̂� +

1

2
(𝑓′′(0) − 1)(𝛿�̂�)2} 

    −
1

8
(

𝜆

1− 𝜆
)

2
{𝑓′(0)(𝛿�̂�)2 + 𝑓′(0)(𝑓′′(0) − 1)(𝛿�̂�)3 + ⋯ } + ⋯ ] 

 = (1 −  𝜆)
1

2 [1 −
𝜆𝑓′(0)𝛿�̂�

2(1− 𝜆)
− {

𝜆(𝑓′′(0)−1)

4(1− 𝜆)
+

1

8
(

𝜆

1− 𝜆
)

2

𝑓′2(0)} (𝛿�̂�)2 

 

        −
1

8
(

𝜆

1− 𝜆
)

2

𝑓′(0)(𝑓′′(0) − 1)(𝛿�̂�)3 + ⋯ ]             (95) 

 

Thus, integrating (95) and evaluating it at the critical values of 𝑡̅ and �̂�, we get 

 

𝑡�̅� = (1 −  𝜆)
1

2 [�̂�𝑎 −
𝜆𝑓′(0)𝛿�̂�2

4(1 −  𝜆)
−

1

3
{

𝜆(𝑓′′(0) − 1)

4(1 −  𝜆)
+

1

8
(

𝜆

1 −  𝜆
)

2

𝑓′2(0)} 𝛿2�̂�𝑎
3 

−
1

32
(

𝜆

1− 𝜆
)

2

𝑓′(0)(𝑓′′(0) − 1)𝛿3�̂�𝑎
4]              (96) 

 

Using (101a,b,c), we next expand both sides of (96) and thereafter equate the coefficients of 𝑂(1) and 𝜉̅2 to get respectively 
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𝑡0̅ = (1 −  𝜆)
1

2�̂�0, 𝑡2̅0 = (1 −  𝜆)
1

2�̂�20                  (97) 

 

Next, we determine (6) at the critical values followed by appropriate expansion using (71a)- (71c) and also use the fact that 𝜇𝑖(0) =
0, 𝑖 = 2, 3, … after which we equate the coefficients of 𝑂(1) and 𝜉̅2 in the expansion and get 

 

𝑡0 = 𝑡0̅ = 𝜋, (using (87))                   (98) 

 

𝑡20 = 0 = 𝑡2̅0 + 𝜇2
′ (0)�̂�0 , (using (89)) 

 

    ∴         𝑡2̅0 = 𝜇2
′ (0)�̂�0                     (99) 

 

From the first of (97) and (98), it follows that 

 

�̂�0 = (1 −  𝜆)−
1

2𝜋                         (100a) 

 

While from the second of (97) and (99), we get 

 

�̂�20 = −𝜇2
′ (0)(1 −  𝜆)−

1

2�̂�0                      (100b) 

 

for 𝜇2
′ (0) as in (38b). Hence, we have fully determined �̂�0 and �̂�20. 

 

Dynamic Buckling Load 

The dynamic buckling load, 𝜆𝐷 is defined as the highest value of the load parameter for the solution to be bounded and is determined 

by recourse to (3) which now takes the equivalent form 

 
𝑑𝜆

𝑑𝜂𝑎

= 0 

 

for 𝜂𝑎 as in (92) or (93a). 

As in Ozoigbo et al [7], the procedure is to first reverse the series (93a) in the form 

 

𝜉̅ = 𝑙1𝜂𝑎 + 𝑙3𝜂𝑎
3 + ⋯                   (101) 

 

By substituting for 𝜂𝑎 form (103a) in (101) and equating the coefficients of 𝜉,̅ we get 

 

𝑙1 =
1

𝑓1
,  𝑙3 = −

𝑓3

𝑓1
4                    (102) 

 

The maximization 
𝑑𝜆

𝑑𝜂𝑎
= 0 follows to give 

  𝜂𝑎𝐷 = √
𝑓1

3

3𝑓3
                     (103) 

 

where, 𝜂𝑎𝐷 = 𝜂𝑎(𝐷) is the value of 𝜂𝑎 at dynamic buckling. On substituting into (103) and simplifying, we get 

 

(1 −  𝜆𝐷)
3

2 =
3√6

2
(𝑏)

1

2𝜆𝐷𝜉̅  [
1+𝐴3𝑓′(0)𝛿

1+𝐴1𝑓′(0)𝛿
]

1

2
                (104) 

 

which determines the dynamic buckling load 𝜆𝐷. 

 

Analysis of Result 

The result (104) is asymptotic in nature and so improves significantly according to the smallness of the magnitudes of 𝜉 ̅and 𝛿. It is 

easily observed that the result also depends on the first derivative of load function evaluated at the initial time. This dependence on 

derivative of the load depends on the degree of accuracy retained in the determination of the maximum displacement 𝜂𝑎 as in (91) 

because, if we had retained up to the terms in 𝛿2 in (91), the result would have depended on both 𝑓′(0) and 𝑓′′(0) as well as on the 

squares of 𝑓′(0). For a step load, cos 𝜏 ≡ 1 and 𝑓(𝜏) ≡ 1, so that from (104), 

 

(1 −  𝜆𝐷)
3

2 =
3√6

2
(𝑏)

1

2𝜆𝐷𝜉 ̅                    (105) 

 

Which was originally obtained by Budiansky [20] using Phase Plane analysis. It is to be stressed perhaps that the novelty in this 

analysis is that the load function depends explicitly on the time variable and that the method of approach is strictly analytical and 

not numerical. 

The graph comparing Equation (105) and (104) is presented below as Graph 1 and Graph 2 respectively. 
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    Fig.2:  Dynamic buckling load 𝜆𝐷 versus imperfection parameter 𝜉.̅ Graph 1, is for step load using Eqn. (105) 

          and Graph 2 is obtained using Eqn. (104)   
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