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Abstract 
Hepatitis B virus (HBV) infection remains a pressing global public health concern, particularly in 
underserved rural regions of low and middle-income countries. Despite the availability of therapies, the 
prevalence of HBV infection persists, often due to neglect in these areas. This paper addresses the 
complex dynamics of HBV transmission by incorporating passive immunity and clinical control 
interventions into a deterministic mathematical model. The model, expressed as a system of non-linear 
differential equations with time-dependent infection rates, reveals the intricate interplay between passive 
immunity and infection susceptibility among infants born to HBV-infected mothers. Through 
comprehensive stability analysis and numerical simulations, we illuminate the dynamics of HBV 
infection within populations. Sensitivity analysis identifies critical parameters that significantly influence 
disease transmission, including the reproduction number and strength number. By exploring the effects of 
these key parameters and control measures, we provide insights into potential strategies for mitigating 
HBV spread. The study underscores the necessity of acknowledging passive immunity and its temporal 
nature in HBV transmission modeling. Moreover, it highlights the importance of addressing maternal 
antibody protection and the implications of control measures for public health policy. Ultimately, this 
research contributes to our understanding of HBV transmission dynamics and offers valuable guidance 
for effective interventions in combating Hepatitis B, particularly in resource-constrained regions. 
 
Keywords: HBV, reproduction number, strength number, passive immunity, equilibrium point, stability, 
survival function, jury’s test, numerical simulation 
 
Introduction 
Hepatitis B remains a significant global health concern, with millions of people affected by 
this viral infection. Understanding the intricate dynamics of Hepatitis B transmission is crucial 
for developing effective clinical control interventions and evaluating the potential impact of 
passive immunity strategies. This study delves into the intricate world of Hepatitis B 
transmission, employing mathematical modeling and simulation to uncover valuable insights. 
Hepatitis B virus (HBV) is a highly contagious pathogen transmitted primarily through contact 
with infected blood or bodily fluids. The virus can lead to acute or chronic infections, and its 
consequences can range from mild illness to severe liver damage, including cirrhosis and 
hepatocellular carcinoma. Despite the availability of vaccines and antiviral treatments, 
Hepatitis B continues to pose a substantial public health challenge. Mathematical modeling 
and simulation techniques provide a unique vantage point for comprehending the transmission 
dynamics of this virus. By constructing mathematical models that capture the intricacies of 
HBV transmission, researchers can gain insights into how the virus spreads within populations 
and assess the effectiveness of various control measures. This study aims to bridge the gap 
between theory and practice by exploring the real-world implications of Hepatitis B 
transmission dynamics. By integrating clinical control interventions and passive immunity 
strategies into the mathematical models, we seek to discern the most effective approaches for 
reducing Hepatitis B transmission rates and minimizing disease burden. Through rigorous 
mathematical analysis and numerical simulation, this research endeavors to uncover patterns, 
trends, and critical factors that influence the transmission of Hepatitis B. Ultimately, the goal 
is to provide evidence-based recommendations that can inform public health policies and  
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 interventions, leading to more effective strategies for managing and, ultimately, mitigating the impact of Hepatitis B on global 

health. Hepatitis B virus (HBV) infection ranks among the most prevalent forms of viral hepatitis that target the liver, an organ of 
paramount importance in the human body. This infection follows a two-phase course, encompassing acute and chronic stages. 
Chronic HBV infection is particularly menacing as it can lead to the development of conditions such as liver cirrhosis and liver 
cancer, presenting a substantial global public health challenge. The primary mode of HBV transmission occurs through 
unprotected sexual intercourse with an individual carrying the virus, as well as through mother-to-child transmission during 
various stages of pregnancy, childbirth, or breastfeeding. Pregnant women and their unborn infants face the risk of contracting 
HBV infection if comprehensive screening is not conducted either during the course of pregnancy or prior to delivery. 
Additionally, it is widely presumed that HBV can be horizontally transmitted through sexual contact with an infected individual. 
Screening for susceptibility plays a pivotal role in both preventing and managing Hepatitis B infection within the general 
population. However, it's worth noting that screening and immunization initiatives targeting HBV are not widely practiced in 
developing nations. Consequently, a significant number of individuals, including expectant mothers, inadvertently transmit the 
infection to their infants and partners. According to a report by CIHEB in 2022, Kenya faces a critical issue where nearly 90% of 
individuals with hepatitis remain unaware of their infection status. Furthermore, access to adequate antenatal, perinatal, and post-
natal maternal care services remains severely limited in rural areas of these countries. This predicament is particularly evident in 
various Kenyan counties where a substantial portion of childbirth occurs in rural villages. Access to information about HBV 
infection is scant, particularly in rural Kenya. Nonetheless, based on existing literature, it is estimated that the overall prevalence 
of HBV infection in Kenya stands at approximately 7.8% among the general population. Moreover, certain demographics, 
particularly individuals who engage in drug injection, bear a disproportionately high burden of carriers. However, the precise 
contribution of each vulnerable population group to the overall prevalence of Hepatitis B remains unclear. 
Another notable challenge is the cost associated with testing, which currently exceeds the cost of treatment, thus acting as a 
barrier to effective hepatitis control efforts. For individuals with acute HBV infection, recovery is possible with timely treatment 
or through natural immunity. However, when left untreated, this condition progresses to chronic Hepatitis, necessitating lifelong 
treatment, which places a significant strain on the country's economy. Vaccination has emerged as a highly effective strategy for 
controlling viral infections globally. Unfortunately, the Hepatitis B vaccine is prohibitively expensive and remains inaccessible to 
many individuals at risk. 
HBV can cause chronic infection, resulting in cirrhosis of the liver, liver cancer, liver failure, and death. Persons with chronic 
infection also serve as the main reservoir for continued HBV transmission. Although chronic infection is more likely to develop in 
persons infected as infants or young children, rates of new infection and acute disease are highest among adults (CDC, 2016). The 
highest concentrations of the virus are found in blood; however, semen and saliva also have been demonstrated to be infectious 
(Walter W Bond, 1977) [19]. HBV remains viable and infectious in the environment for at least 7 days and can be present in high 
concentrations on inanimate objects, even in the absence of visible blood (Walter W Bond, et al., 1981) [20]. Persons with chronic 
HBV infection are the major source of new infections, and the primary routes of HBV transmission are sexual contact, 
percutaneous exposure to infectious body fluids, perinatal exposure to an infected mother, and prolonged, close personal contact 
with an infected person, as occurs in household contact (Eric E Mast, et al, 2006) [6]. No evidence exists of transmission of HBV 
by casual contact in the workplace, and transmission occurs rarely in childcare settings (Eric E Mast, et al, 2005) [7]. Few cases 
have been reported in which health-care workers have transmitted infection to patients, particularly since implementation of 
standard universal infection control precautions (RN Gunson, et al, 2003) [18]. Most people do not experience any symptoms when 
newly. However, some people have acute illness with symptoms that last several weeks, including yellowing of the skin and eyes 
dark urine, extreme fatigue, nausea, vomiting and abdominal pain. People with acute hepatitis can develop acute liver failure, 
which can lead to death if not diagnosed and treated earlier. Among the long-term complications of HBV infections, a subset of 
persons develops advanced liver diseases such as cirrhosis and hepatocellular carcinoma, which cause high morbidity and 
mortality. There is no specific treatment for acute hepatitis B, recovery can be through earlier treatment or natural immunity. 
Therefore, care is aimed at maintaining comfort and adequate nutritional balance, including replacement of fluids lost from 
vomiting and diarrhea. Most important is the avoidance of unnecessary medications. Chronic hepatitis B infection can be treated 
with medicines, including oral antiviral agents. Treatment can slow the progression of HBV, cirrhosis, reduce incidence of liver 
cancer and improve long-term survival. 
In June 2022 report by the World Health Organization (WHO), it was highlighted that there are over 350 million individuals 
persistently carrying the Hepatitis B Virus (HBV), and approximately 0.6 million people succumb to HBV-related liver diseases 
or hepatocellular carcinoma each year. The African region was identified as contributing to 26% of the global burden of hepatitis 
B and C infections in the year 2020. To combat the transmission of HBV, several comprehensive strategies have been successfully 
implemented. Among these, immunizing vulnerable individuals, especially newborns, with safe and effective vaccines has proven 
to be the most appealing and cost-effective approach for reducing the incidence of hepatitis B. Despite the success of vaccination 
efforts, there are still challenges to be addressed. One significant factor in HBV transmission is passive immunity, which involves 
the transfer of the virus from an infected mother to her child during childbirth. Newborns acquire passive immunity from their 
mothers through the placenta. Unfortunately, many mothers unknowingly transmit the infection to their infants when their own 
immunity is compromised. Therefore, it is crucial to anticipate the long-term trends in HBV prevalence to provide valuable 
insights for public health decision-making. One potential strategy for predicting the prevalence of HBV infections is to employ a 
mathematical model that incorporates the passive immunity component within the transmission dynamics. This approach can offer 
a deeper understanding of the dynamics of HBV and aid in making informed public health decisions. 
In 2021, the World Health Organization (WHO) conducted estimations indicating that the need for treatment among individuals 
with chronic hepatitis B infection ranges from 12% to 25%, with variations depending on the specific context and eligibility 
criteria. For effective suppression of the hepatitis B virus, WHO recommends the utilization of oral medications like tenofovir or 
entecavir as the most potent drugs. Individuals afflicted with chronic hepatitis B typically require lifelong treatment. In regions 
with limited resources, most individuals diagnosed with liver cancer sadly experience rapid deterioration and often succumb to the 
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 disease within a few months. Conversely, in high-income areas, patients typically seek medical attention at earlier stages of the 

infection, allowing for access to surgical and chemotherapeutic interventions that can extend life expectancy from several months 
to a few years. In some high-income countries, liver transplantation is occasionally employed as a treatment option for individuals 
with cirrhosis or liver cancer, although success rates vary.  
WHO strongly advocates for the administration of the hepatitis B vaccine to all infants as soon as possible following birth, 
preferably within the initial 24 hours. This should be followed by 2 or 3 additional doses of the vaccine, administered at intervals 
of at least 4 weeks, to complete the vaccination series. The protective immunity conferred by this vaccination lasts for a minimum 
of 20 years, and it is likely to be lifelong. WHO does not recommend booster vaccinations for those who have successfully 
completed the 3-dose vaccination schedule. In addition to infant vaccination, WHO advises the use of antiviral prophylaxis to 
prevent the transmission of hepatitis B from mother to child. Regrettably, there is a lack of adequate information regarding 
Hepatitis B vaccines, and screening, diagnosis, and testing for Hepatitis are not commonly practiced among pregnant women 
during their antenatal care. This is particularly concerning for the most vulnerable population groups, especially those residing in 
rural areas. To mitigate the transmission of Hepatitis B, WHO suggests implementing strategies focused on blood safety and 
promoting safer sex practices. This includes measures such as minimizing the number of sexual partners and adopting barrier 
protective measures like condoms. 
According to a report by Sheena, B.S. et al. in 2022, interventions targeting Hepatitis B, including vaccination, testing, and 
treatment, must be strategically reinforced and expanded to achieve the goal of Hepatitis B elimination outlined in the UN 
Sustainable Development Goals for 2030. The global burden of hepatitis B is marked by significant disparities, and accordingly, 
Kenya's AIDS Strategic Plan II for 2022 also emphasizes the importance of screening, prevention, and treatment of viral hepatitis 
and sexually transmitted infections. 
In 2019, WHO estimated that 296 million individuals were living with chronic hepatitis B infection, and there were approximately 
1.5 million new infections reported each year. Tragically, hepatitis B led to an estimated 820,000 deaths in 2019, primarily 
attributed to cirrhosis and hepatocellular carcinoma, a form of primary liver cancer. Thankfully, the availability of safe and 
effective vaccines presents a crucial opportunity for preventing hepatitis B infections. 
 
Review of related Literature 
In a study conducted by Emerenini and Inyama in 2018 [2], they embarked on a mathematical depiction of the intricate processes 
involved in the transmission of HBV while taking into account various population subgroups. Their model also factored in the 
influence of HBV vaccination for newborns and the treatment of individuals already infected as measures to control transmission. 
The foundation of their study rested upon the conventional SEIR model. This research introduced a mathematical model that 
elucidated the effects of vaccination and treatment on the dynamics of HBV transmission. To capture the changing proportions 
within different classes of the population, five differential equations were employed. Their findings revealed that the equilibrium 
state devoid of individuals (Referred to as the trivial equilibrium state) was inherently unstable. Subsequently, the study 
determined the dynamics of the Disease-Free Equilibrium (DFE) state and conducted a rigorous stability analysis, employing the 
Routh-Hurwitz theorem for this purpose. 
In a study conducted by Wodajo et al in 2022 [8], put forth a model outlining the dynamics of hepatitis B virus (HBV) infection, 
incorporating two pivotal controls: vaccination and treatment. Initially, the research delved into the system's dynamic behavior 
under constant control measures. In this context of constant controls, the authors embarked on an assessment of the effective 
reproduction number and meticulously examined the presence and stability of equilibria. Notably, two non-negative equilibria 
emerged from their analysis-the disease-free equilibrium, which consistently exists and exhibits local asymptotic stability, and the 
endemic equilibrium, also characterized by local asymptotic stability. Furthermore, the study explored the relationship between 
the effective reproduction number and the exposure rate concerning each intervention, as well as their combined impact when 
both vaccination and treatment interventions were considered. Their investigation unveiled that a reduction in the exposure rate 
corresponded to a decrease in the HBV disease's reproduction number, indicating an increase in the susceptible population. This 
underscored the potential effectiveness of educational campaigns in reducing the population's exposure to HBV disease. 
Moreover, their research involved a comparative analysis of the reproduction number, revealing that both vaccination and 
treatment interventions played crucial roles in diminishing the HBV disease's reproduction number in contrast to scenarios 
without any interventions. An index based on sensitivity parameters shed light on certain factors that exerted the most significant 
influence in either exacerbating or mitigating the endemicity of HBV. Conversely, some parameters were found to have the most 
substantial impact in reducing the prevalence of HBV within the population. 
In their recent study, Wang et al. (2022) [5] devised a mathematical model for Hepatitis B virus (HBV) transmission that follows a 
susceptible-infectious-recovered (SIR) framework. Notably, they incorporated the impact of waning herd immunity into their 
model. To explore the model's behavior, they conducted simulations using MATLAB. Their investigation, employing both steady-
state solutions and computer simulations, brought to light a noteworthy finding. A shorter duration of protection induced by 
vaccination led to a significant rise in the proportion of susceptible individuals. Specifically, the prevalence of susceptible 
increased from 15% when lifelong protection was assumed to a substantial 82.16% when protection lasted for only 20 years. This 
observation suggests that a larger susceptible population may consequently lead to a higher incidence of acute cases and the 
emergence of new chronic cases. Additionally, their analysis extended to examining the effects of booster shots on the number of 
newly infected individuals. This analysis indicated that implementing a booster shot strategy could potentially yield positive 
outcomes in terms of disease control and prevention. 
In a study conducted by Zu et al in 2018, introduced an innovative approach aimed at forecasting the extended impact of 
augmenting the coverage of HBV treatment within a population. Beyond the established hepatitis B vaccination strategy, the 
adoption of a "test and treat" strategy emerged as a highly effective measure for managing hepatitis B in China. The study 
recommended that substantial endeavors should be devoted to expanding the reach of the "test and treat" approach among 
individuals afflicted with chronic hepatitis B. Moreover, their research yielded quantifiable insights and novel information that 
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 hold the potential to enhance both preventive and therapeutic strategies concerning hepatitis B in China and similar high-endemic 

regions. 
In Golgeli's 2019 study, a well-established mathematical model was employed to describe how hepatitis B transmission unfolds in 
Turkey. The focus was exclusively on the acute phase of the disease. The study revolved around assessing the equilibrium states 
in both the disease-free and endemic scenarios while also delving into the stability of the equilibrium concerning the disease's 
dynamics. The study involved estimating critical parameters like the transmission rate and the basic reproductive number (R0) of 
HBV using real-world data. Through numerical simulations and sensitivity analyses, the research aimed to provide insights into 
the potential future trends of HBV in Turkey. Interestingly, the findings suggested that HBV in Turkey tends to maintain stability 
in the disease-free state. Furthermore, an analysis of real data indicated a decrease in the seroprevalence of the disease between 
2005 and 2011. The study underscored that alterations in demographic parameters can transition a disease-free state into an 
epidemic state. Consequently, the study emphasized the importance of focusing on factors influencing demography in Turkey as a 
means of controlling HBV. Likewise, this approach could open the door to more comprehensive analyses of HBV transmission 
dynamics in Turkey. These analyses might incorporate factors like age structure, both acute and chronic phases of the disease, 
time-dependent parameters, vaccination processes, and more. This is because the basic reproductive rate is inherently linked to the 
transmission rate, making these factors critical considerations in understanding HBV dynamics in Turkey. 
The research conducted by James et al in 2022 [12] focused on modeling Hepatitis B Virus (HBV) transmission by integrating 
various factors such as vaccination, on-the-spot treatment, sanatorium stays, and immigration into an existing SEIR model. The 
primary goals of the study were to determine the equilibrium state of the model, analyze both its local and global stability, and 
perform numerical simulations to understand the disease dynamics. Their approach utilized a deterministic mathematical model 
that divided the population into seven distinct compartments, namely: Immunized M (t), Susceptible S (t), Latent L (t), Infectious 
I(t), Sanatorium S(t), Vaccinated V(t), and Recovered R(t). The interactions among these compartments were characterized 
through a set of differential equations. From an epidemiological perspective, their findings suggested that HBV would persist 
unless measures to control immigration of HBV-infected individuals were implemented. The local stability analysis of the 
disease-free equilibrium, in the absence of HBV-infected immigrants, indicated a reproductive number below one. This stability 
was evident through the coefficients of the polynomial characteristics meeting the Routh-Hurwitz criterion, establishing local 
asymptotic stability. Also, the research explored the global stability of the disease-free equilibrium in the model. This analysis 
revealed that the entries in the matrix for the infected compartment remained consistently positive, indicating the overall stability 
of the disease-free state. To assess the effectiveness of various control strategies, such as vaccination, sanatorium stays, or a 
combination of both, the researchers set baseline parameter values and employed MATLAB codes for numerical computations. 
The results underscored that even with relatively low vaccination rates, the infected population remained notably higher than other 
population groups. However, when the vaccination rate was increased to 0.9, a significant decline in the infected population was 
observed, demonstrating the potential impact of vaccination on HBV control. 
Wodajo et al. (2022) [8] introduced and thoroughly examined a non-linear deterministic mathematical model named SVEIRE, 
designed to capture the transmission dynamics and control strategies for Hepatitis B virus (HBV) disease. In their model, they 
incorporated a force of infection that factored in the contact rate of the susceptible population and the probability of transmission. 
A significant contribution of their work was demonstrating that the solution to this dynamic system remains positive and bounded. 
To gain insights into the model's behavior, the researchers conducted a qualitative study employing the stability theory of 
differential equations. They derived the basic reproductive number, a crucial epidemic indicator, from the largest eigenvalue of 
the next-generation matrix. This analysis encompassed both local and global asymptotic stability conditions for both disease-free 
and endemic equilibrium states. The results of sensitivity analysis highlighted the effectiveness of bolstering vaccination rates for 
newborns and providing treatment for individuals with chronic infections in halting HBV transmission. Additionally, their 
research underscored the considerable role played by HBV re-infection in driving up the number of infected individuals. 
Ultimately, the study concluded that a combination of vaccination and treatment represents the most potent strategy for 
controlling Hepatitis B virus infection, offering valuable insights for public health efforts in this domain. 
 
Research Gaps 
Each of the cited studies on Hepatitis B transmission dynamics and control has made significant contributions to the field. 
However, they also exhibit certain gaps and limitations that the current study on hepatitis B transmission dynamics with passive 
immunity and clinical control interventions through mathematical modelling, analysis, and simulation can address. Many of the 
cited studies focused on specific aspects of Hepatitis B dynamics, such as vaccination or treatment, and may not consider the full 
range of factors influencing transmission. The current study appears to integrate both passive immunity and clinical control 
interventions, offering a more comprehensive approach. Some of the previous studies employ simplified models that may not fully 
capture the complexities of Hepatitis B transmission. The current study's use of a mathematical model seems promising in 
providing a more nuanced understanding.  
Some studies rely on hypothetical scenarios and may lack empirical data for validation. The current study's emphasis on 
numerical simulation and sensitivity analysis suggests a potential for using real-world data to inform the model. Several of the 
cited studies are geographically specific, which may limit the generalizability of their findings. The current study's focus on the 
broader topic of passive immunity and clinical control interventions suggests an opportunity to provide insights that are more 
universally applicable. Previous studies often neglect the role of passive immunity in Hepatitis B transmission dynamics, focusing 
primarily on vaccination and treatment. The current study explicitly incorporates passive immunity, addressing this gap in the 
existing literature. Some studies do not thoroughly consider demographic factors and population heterogeneity. The current 
study's mathematical modeling approach could potentially account for these aspects, leading to a more realistic representation. 
While previous studies discuss control strategies, they may not perform comprehensive analyses of the potential impacts of these 
strategies. The current study aims to provide a thorough evaluation of the effects of both passive immunity and clinical 
interventions, which can fill this gap. Previous research may not fully explore the policy implications of their findings for public 
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 health interventions. The current study, through its modeling and analysis, may provide more concrete recommendations for 

policymakers.  
In summary, while the cited studies have significantly contributed to understanding Hepatitis B transmission dynamics, they 
exhibit gaps related to scope, model complexity, data utilization, geographical specificity, and the consideration of passive 
immunity. The current study, with its focus on mathematical modeling, analysis, and simulation, has the potential to address these 
gaps by providing a more comprehensive and data-informed exploration of Hepatitis B transmission dynamics and control 
strategies. However, it's apparent that previous studies did not account for passive immunity and screening, nor did they consider 
demographic factors like birth and death rates. Moreover, these studies often overlooked the distinction between the acute and 
chronic phases of Hepatitis B. In line with the ambition of achieving the UN SDGs target of eliminating viral Hepatitis B by 2030, 
this research comprehensively incorporates these influential factors, along with a combination of intervention strategies. This 
study's primary objective is to develop and analyze a mathematical model of HBV transmission, encompassing a passive 
immunity component, screening, as well as vaccination and treatment control measures as recommended by Lancet in 2022. Our 
aim is to gain insights into how passive immunity and screening impact the basic reproduction number, identify equilibrium 
points, assess their stability, and conduct simulations utilizing published data. Enhancing our understanding of HBV infection 
prevalence and dynamics among marginalized populations will enable the government to devise more effective strategies for 
controlling and ultimately eradicating the infection. Moreover, the findings from this model will inform clinical care and the 
management of Hepatitis B infection, particularly among vulnerable population groups. 
This paper is structured as follows; in Section 2, we formulate and establish the basic properties of the model. The model is 
analyzed in Section 3. In Section 4, we carry out some numerical simulations. Parameter estimation and numerical results are also 
presented in this section. The paper is concluded in Section 5. 
 
Hepatitis B Model formulation 
The model was constructed by compartmentalizing the epidemiological population based on an individual's state of HBV 
infection. The total human population, denoted as N, was divided into several categories, including susceptible (S), vaccinated 
(V), exposed (E), acute (A), chronic (C), treated (T), passively immune (M), and recovered (R). Specifically; Susceptible (S) 
represented individuals not infected but at risk of HBV infection. Exposed (E) encompassed individuals who had been infected 
but were not yet infectious. Acute Hepatitis B (AHB) referred to individuals in the initial, highly infectious stage of HBV 
infection. Chronic Hepatitis B (CHB) included individuals with chronic HBV infection, who could be infectious or non-infectious 
to others. Passively immune denoted infants who acquired immunity from their mothers. This approach considered that acquired 
immunity might wane over time, whereas immunity resulting from vaccination persisted throughout an individual's lifetime. The 
assumptions underlying the model were as follows: 
A1: An open community with vital dynamics including the births and death rates. 
A2: The population is homogeneously mixed for effective transmission of HBV infection to occur, that is, there is free interaction 
within the population in the compartments. 
A3: Horizontal and vertical HBV transmission occurs from mother to child or through sexual contacts. 
A4: All new born infants acquire passive immunity from their mothers hence they are at risk of Hepatitis B 
A5: Individuals with acute and chronic HBV infection recover through treatment, that is, all recovered individuals acquire 
permanent immunity and subjected to treatment through serological screening/testing. 
A6: Hepatitis induced death is due to fulminant hepatitis. 
A7: Hep B vaccination and treatment is 100% effective. Thus, vaccinated and treated individuals do not transmit the infection. 
 

 
 

Fig 1: A flowchart of HBV model incorporating passive immunity, screening, and vaccination and treatment compartments. 
 
Based on the stated model assumptions, the model is governed by the following non-linear ordinary differential equations deduced 
from each of the compartments 
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𝑑𝑑𝑑𝑑
 =  𝜋𝜋𝑝𝑝1 − (𝜑𝜑 + 𝜇𝜇)𝑀𝑀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋𝑝𝑝2 − 𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜋𝜋(1 − 𝑃𝑃) − (𝜇𝜇 + 𝜆𝜆)𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜇𝜇 + 𝜆𝜆 )𝑆𝑆 + 𝜑𝜑𝑀𝑀 − (𝜇𝜇 + 𝜌𝜌)𝐸𝐸
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝐸𝐸 − ( 𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇 )𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝐴𝐴 − (1 − 𝛼𝛼 +  𝛿𝛿 +  𝜇𝜇 )𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝐴𝐴 + (1 − 𝛼𝛼)𝐶𝐶 − (𝜓𝜓 + 𝛿𝛿 + 𝜇𝜇 )𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜓𝜓𝑇𝑇 −  𝜇𝜇𝜇𝜇 ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

                   (1) 

 
Where λ =  β (E + η1A+ η2C) with η2 > η1, P = p1 + p2 
  
𝑁𝑁(𝑡𝑡) = 𝑀𝑀( 𝑡𝑡 ) + 𝜇𝜇(𝑡𝑡) + 𝑆𝑆(𝑡𝑡)  + 𝐸𝐸(𝑡𝑡)  + 𝐴𝐴(𝑡𝑡)  + 𝐶𝐶(𝑡𝑡)  + 𝑇𝑇(𝑡𝑡)  + 𝜇𝜇(𝑡𝑡)             (2)  
 
Model analysis and findings 
Positivity of solutions 
The model deals with human population and so the solution to the differential equations (1) is non-negative for all time, t ≥ 0. This 
is a crucial requirement for the model to be mathematically acceptable and biologically significant. Differential and integral 
calculus techniques are applied for the analysis. The following theorem is proposed to proof the positivity of model solutions. 
 
Theorem 1: Let 𝑀𝑀( 0 ) ≥  0,𝜇𝜇(0) ≥ 0, 𝑆𝑆(0)  ≥  0,𝐸𝐸(0)  ≥  0,𝐴𝐴(0)  ≥  0,𝐶𝐶(0)  ≥  0,𝑇𝑇(0)  ≥  0,𝜇𝜇(0)  ≥  0 be the solution to 
the system of equations (1)  
 
Proof 
From model equations (1) 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑
 =  𝜋𝜋𝑝𝑝1 − (𝜑𝜑 +  𝜇𝜇 )𝑀𝑀 since 𝜋𝜋𝑝𝑝1  ≥  0, by comparison theorem, we have 

 
 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑑𝑑

 ≥ −(𝜑𝜑 + 𝜇𝜇 )𝑀𝑀  
 
By separation of variables, we have 
 
𝑑𝑑𝑑𝑑
𝑑𝑑
≥ −(𝜑𝜑 + 𝜇𝜇)𝑑𝑑𝑡𝑡  

 
Integrating both sides w.r.t t, we get 
 
𝑙𝑙𝑙𝑙𝑀𝑀(𝑡𝑡) ≥ −(𝜑𝜑 + 𝜇𝜇)𝑡𝑡 + ℎ  
 
𝑀𝑀(𝑡𝑡)  ≥  𝐾𝐾 𝑒𝑒𝑒𝑒𝑝𝑝 (−(𝜑𝜑 + 𝜇𝜇)𝑡𝑡)  
 
At 𝑡𝑡 = 0,𝐾𝐾 =  𝑀𝑀0, thus 𝑀𝑀(𝑡𝑡)  ≥  𝑀𝑀0𝑒𝑒𝑒𝑒𝑝𝑝 (−(𝜑𝜑 + 𝜇𝜇)𝑡𝑡)  
 
As 𝑡𝑡 →  ∞,𝑀𝑀(𝑡𝑡) ≥  𝑀𝑀0𝑒𝑒𝑒𝑒𝑝𝑝 (−(𝜑𝜑 + 𝜇𝜇)𝑡𝑡) ≥  0,  
 
Hence M (t) stays positive for t ≥ 0. By the same procedure and technique, it follows that  
 
𝜇𝜇(𝑡𝑡) ≥ 𝜇𝜇0exp (−𝜇𝜇𝑡𝑡) ≥ 0, 𝑆𝑆(𝑡𝑡)  ≥  𝑆𝑆0𝑒𝑒𝑒𝑒𝑝𝑝(−(𝜇𝜇 +  𝜆𝜆) 𝑡𝑡) ≥  0, 𝐸𝐸(𝑡𝑡)  ≥ 𝐸𝐸0𝑒𝑒𝑒𝑒𝑝𝑝(−( 𝜇𝜇 +  𝜌𝜌 )𝑡𝑡) ≥  0,  
 
𝐴𝐴(𝑡𝑡)  ≥ 𝐴𝐴0exp (−(𝛼𝛼 +  𝛾𝛾 +  𝛿𝛿 +  𝜇𝜇) 𝑡𝑡)  ≥  0, 𝐶𝐶(𝑡𝑡) ≥ 𝐶𝐶0 𝑒𝑒𝑒𝑒𝑝𝑝 (−( 1 − 𝛼𝛼 +  𝛿𝛿 +  𝜇𝜇 )𝑡𝑡) ≥  0,  
 
𝑇𝑇(𝑡𝑡) ≥  𝑇𝑇0 𝑒𝑒𝑒𝑒𝑝𝑝 (−(𝜓𝜓 +  𝛿𝛿 +  𝜇𝜇) 𝑡𝑡)  ≥  0, and 𝜇𝜇(𝑡𝑡)  ≥ 𝜇𝜇0𝑒𝑒𝑒𝑒𝑝𝑝 (−𝜇𝜇 𝑡𝑡)  ≥  0.Thus S (t), V (t) 
 
E (t), A(t), C(t),T(t) and R(t) also stays positive for all time t ≥ 0.  
 
Feasible region and boundedness of the solutions 
This is the region of convergence to the solution of the system. The solution stays within this region throughout, that is, positively 
invariant. This is done by the time derivative of the total population, N. This is to say that the solution is bounded within the 
feasible region. 
 
Theorem 2: The region Ω = { 𝑀𝑀( 𝑡𝑡 ),𝜇𝜇(𝑡𝑡), 𝑆𝑆( 𝑡𝑡 ),𝐸𝐸( 𝑡𝑡 ),𝐴𝐴( 𝑡𝑡 ),𝐶𝐶( 𝑡𝑡 ),𝑇𝑇( 𝑡𝑡 ),𝜇𝜇( 𝑡𝑡 ) ∈ ℝ7

+|𝑀𝑀(0)  ≥  0, 𝑆𝑆(0)  ≥  0,𝐸𝐸(0)  ≥
 0,𝐴𝐴(0)  ≥  0,𝐶𝐶(0)  ≥  0,𝑇𝑇(0)  ≥  0,𝜇𝜇(0)  ≥  0,𝑁𝑁(𝑡𝑡) ≤ 𝑁𝑁0 } is positively invariant and attracting the solutions to the system of 
equations (1) 
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 Proof 

We consider equation (2), 𝑁𝑁(𝑡𝑡) = 𝑀𝑀(𝑡𝑡) + 𝜇𝜇(𝑡𝑡) + 𝑆𝑆(𝑡𝑡)  + 𝐸𝐸(𝑡𝑡)  + 𝐴𝐴(𝑡𝑡)  + 𝐶𝐶(𝑡𝑡)  + 𝑇𝑇(𝑡𝑡)  + 𝜇𝜇(𝑡𝑡)  
Taking the time derivative on both sides yields 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                   (3) 
 
Substituting for the time derivatives of M, V, S, E, A, C, T and R, we have 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜋𝜋𝑝𝑝1 − (𝜑𝜑 +  𝜇𝜇 )𝑀𝑀) + (𝜋𝜋𝑝𝑝2 − 𝜇𝜇𝜇𝜇) + ( π(1 − P) − (μ + λ)S) + �(μ + λ )S + φM − (μ + ρ)E� + (ρE − ( α + γ + δ +
 μ )A) + (γA − (1 − α +  δ +  μ )C) + (αA + (1 − α)C − ψ T − ( δ +  μ )T) + (ψT −  μR)        (4)  
 
Expanding and simplifying, we obtain 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋 − δ(A + C + T) − μ(S + A + E + C + M + R + T + V)              (5)  
 
If there are no infectious humans δ = 0, thus by comparison theorem equation (5) reduces to 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 𝜋𝜋 − μN                          (6) 

 
Integrating equation (6) as 𝑡𝑡 → ∞ yields 
 
lim
𝑑𝑑→∞

𝑁𝑁(𝑡𝑡)  ≤ π
𝜇𝜇
                          (7) 

 
This proves the boundedness of the solutions inside ℝ. This implies that all solutions of the system equations (1) starting in ℝ 
remain in ℝ for all time. Thus ℝ is positively invariant and attracting and hence it is sufficient to consider the dynamics of our 
system inℝ. 
 
Equilibrium points and reproduction number 
Hepatitis B infection free equilibrium point 
This is the solution to the system of equation (1) in which HBV infection is not present in the population and the entire population 
is susceptible. The HBV infection-free equilibrium point (IFE) of the system (1) is gotten by setting the RHS of system (1) to zero 
and evaluated at infectious classes at zero. We let the IFEP as 𝐻𝐻0  = (𝑀𝑀0,𝜇𝜇0, 𝑆𝑆0,𝐸𝐸0,𝐴𝐴0,𝐶𝐶0,𝑇𝑇0,𝜇𝜇0).Setting the RHS of the 
system (1) we have 
 

𝜋𝜋𝑝𝑝1  − (𝜑𝜑 +  𝜇𝜇 )𝑀𝑀0 = 0
𝜋𝜋𝑝𝑝2 − 𝜇𝜇𝜇𝜇0 = 0

π(1 − P) − (μ + λ)S0 = 0
(μ + λ )S0 + φ𝑀𝑀0 − (μ + ρ)E0 = 0 
ρE0 − ( α + γ + δ +  μ )A0 = 0
 γA0 − (1 − α +  δ +  μ )C0 = 0

αA0 + (1 − α)C0 − (ψ + δ +  μ )T0 = 0
ψT0 −  μR0 = 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                   (8) 

 
Solving (8) gives 𝑀𝑀0 =  𝜋𝜋𝑝𝑝1

𝜑𝜑+𝜇𝜇
,𝜇𝜇0 = 𝜋𝜋𝑝𝑝2

𝜇𝜇
,𝑆𝑆0 = 𝜋𝜋(1−𝑃𝑃)

𝜇𝜇
. Thus, 𝐻𝐻0 = (𝜋𝜋𝑝𝑝1

𝜑𝜑+𝜇𝜇
, 𝜋𝜋𝑝𝑝2
𝜇𝜇

, 𝜋𝜋(1−𝑃𝑃)
𝜇𝜇

, 0,0,0,0,0) 
 
Control Reproduction number 
This parameter represents the number of secondary infections generated by a single infectious Hepatitis B host individual during 
its infectious lifespan when control measures are in place, and the population is entirely susceptible to the infection. In most 
epidemiological models, it is traditionally denoted as R_0. To calculate this reproduction number, we utilize the Next-Generation 
Matrix (NGM) approach, which was initially introduced by Diekmann and Heesterbeek in 1990. R_0 is essentially defined as the 
spectral radius of the Next-generation matrix, where the NGM is a matrix that quantifies the number of newly infected individuals 
across different categories in successive generations. R_0 serves as a critical metric for determining whether the infection will 
persist or die out within a population. Several techniques can be employed to compute the NGM, and in this study, we follow the 
Van den Driessche and Watmough technique. This method involves a series of fundamental steps: Identifying the infectious 
compartments (E, A, and C), Deriving matrices for new infections (represented as 'f') and the transfer of infections (represented as 
'g'), Calculating the Jacobian matrices of 'f' and 'g,' denoted as 'F' and 'G,' respectively, evaluated at the Infectious-Free 
Equilibrium Point (IFEP), Obtaining the inverse of matrix 'G' as 'G^(-1).' Finally, computing the NGM as the product of FG^(-1) 
and determining R_0 as ρ(FG^(-1)), where ρ(A) signifies the spectral radius of matrix 'A.' The spectral radius of a matrix is 
defined as the maximum absolute value among its eigenvalues. 
By following these procedures, we derive the matrices for new infections and the transfer of infections from the E, A, and C 
compartments. 
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𝑓𝑓 = �
𝜆𝜆𝑆𝑆
0
0
� and 𝑔𝑔 = �

(𝜇𝜇 + 𝜌𝜌)𝐸𝐸 − φM
(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)𝐴𝐴 − 𝜌𝜌𝐸𝐸

(1 − α +  δ +  μ )C − 𝛾𝛾𝐴𝐴
�                (9) 

 
The Jacobian matrices F and G are obtained as the partial derivatives of f and g w.r.t to E, A and C evaluated at 𝐻𝐻0 
 

𝐹𝐹 = �
𝛽𝛽𝑆𝑆0 𝛽𝛽𝜂𝜂1𝑆𝑆0 𝛽𝛽𝜂𝜂2𝑆𝑆0

0 0 0
0 0 0

� and 𝐺𝐺 = �
𝜇𝜇 + 𝜌𝜌 0 0
−𝜌𝜌 𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇 0
0 −𝛾𝛾 1 − α +  δ +  μ

�          (10) 

 

The inverse of 𝐺𝐺 is obtained as 𝐺𝐺−1 =

⎝

⎜
⎛

1
𝜇𝜇+𝜌𝜌

0 0
𝜌𝜌

(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)
1

𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇
0

𝛾𝛾𝜌𝜌
(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

𝛾𝛾𝜇𝜇+𝛾𝛾𝜌𝜌
(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

1
1−𝛼𝛼+𝛿𝛿+𝜇𝜇⎠

⎟
⎞

      (11) 

 
The NGM matrix is the product of 𝐹𝐹𝐺𝐺−1 =

�

𝜋𝜋𝜋𝜋(1−P)
𝜇𝜇(𝜇𝜇+𝜌𝜌)

+ 𝜋𝜋𝜋𝜋𝜌𝜌(1−P)𝜂𝜂1
𝜇𝜇(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

+ 𝜋𝜋𝜋𝜋𝛾𝛾𝜌𝜌(1−P)𝜂𝜂2
𝜇𝜇(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

𝜋𝜋𝜋𝜋(1−P)𝜂𝜂1
𝜇𝜇(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)

+ 𝜋𝜋𝜋𝜋(𝛾𝛾𝜇𝜇+𝛾𝛾𝜌𝜌)(1−P)𝜂𝜂2
𝜇𝜇(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

𝜋𝜋𝜋𝜋(1−P)𝜂𝜂2
𝜇𝜇(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)

0 0 0
0 0 0

�    (12) 

 
The characteristic polynomial of |𝐹𝐹𝐺𝐺−1 − 𝜆𝜆𝜆𝜆| = 0 is given by 𝜆𝜆3 + 𝑏𝑏𝜆𝜆2 + 𝑐𝑐𝜆𝜆 + 𝑑𝑑 = 0, where a, b, c and d are constants. Thus, the 
eigenvalues of NGM are obtained as �0,0, 𝜋𝜋𝜋𝜋(1−𝑃𝑃)((1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇+𝜌𝜌𝜂𝜂1)+𝛾𝛾𝜌𝜌𝜂𝜂2)

2𝜇𝜇(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)
�. 𝜇𝜇0 is obtained as the dominant eigenvalue of 

the NGM 𝜌𝜌(𝐹𝐹𝐺𝐺−1) given as 
 
 𝜇𝜇𝑐𝑐 = 𝜋𝜋𝜋𝜋(1−𝑃𝑃)((1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇+𝜌𝜌𝜂𝜂1)+𝛾𝛾𝜌𝜌𝜂𝜂2)

2𝜇𝜇(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)
                (13) 

 
The strength number, 𝑨𝑨𝟎𝟎 
This parameter serves as an extension of R_0, yet it continues to be a parameter of future significance. Its purpose is to gauge the 
complexity of infection spread or pinpoint patterns of waves in a spreading process. The Next-Generation Matrix (NGM) is still 
employed to estimate the strength number, but in this context, we calculate the second derivative of the contagious classes, as 
discussed by Atangana and İğret Araz in 2021. The second derivatives of the contagious classes, determined using the mass 
incidence principle, are as follows: 
 
𝜕𝜕2

𝜕𝜕𝑑𝑑2
�𝛽𝛽𝑆𝑆 𝑑𝑑

𝑑𝑑
� , 𝜕𝜕

2

𝜕𝜕𝑑𝑑2
�𝛽𝛽𝑆𝑆 𝑑𝑑

𝑑𝑑
� and 𝜕𝜕

2

𝜕𝜕𝑑𝑑2
�𝛽𝛽𝑆𝑆 𝑑𝑑

𝑑𝑑
�                 (14) 

 
The Jacobian of matrix of new infections and transfer of infections of the second derivative of the infectious classes 
 

𝐹𝐹𝑑𝑑 = �
− 𝜋𝜋𝑑𝑑

𝑑𝑑2
− 𝜋𝜋𝜂𝜂1𝑑𝑑

𝑑𝑑2
− 𝜋𝜋𝜂𝜂2𝑑𝑑

𝑑𝑑2

0 0 0
0 0 0

� and 

 

 𝐺𝐺𝑑𝑑−1 =

⎝

⎜
⎛

1
𝜇𝜇+𝜌𝜌

0 0
𝜌𝜌

(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)
1

𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇
0

𝛾𝛾𝜌𝜌
(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

𝛾𝛾𝜇𝜇+𝛾𝛾𝜌𝜌
(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(𝜇𝜇+𝜌𝜌)

1
1−𝛼𝛼+𝛿𝛿+𝜇𝜇⎠

⎟
⎞

            (15) 

 
The det �𝐹𝐹𝑑𝑑𝜇𝜇𝑑𝑑−1 − 𝜆𝜆𝜆𝜆� = 0, gives the strength number as 𝐴𝐴0 = − R𝐶𝐶

𝛮𝛮2
< 0             (16) 

 
Estimation of basic reproduction number by survival function 
The survival function determines the number of new infections caused by an initial case using the following three components; (i) 
the rate at which an individual in a particular class causes new infections, 𝑘𝑘𝑑𝑑𝑏𝑏𝑑𝑑 (ii) the probability, P that an individual is still in 
the class at time t, (iii) the probability that an initial case will enter that class. Thus, the basic reproduction number based on this 
approach is defined by the integral of the product of the first two terms multiplied by the third term derived from the contagious 
classes as follows 
 
𝜇𝜇0,𝑑𝑑 = ∫ 𝑘𝑘𝑑𝑑𝑏𝑏𝑑𝑑𝑃𝑃𝑑𝑑 𝑑𝑑𝑡𝑡

∞
0  (Li, J., & Blakeley, D., 2011) [13]                (17) 

 
Applying this method (17) and casting to all the infectious classes we have 
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 𝜇𝜇0,𝑑𝑑 = 𝛽𝛽𝑆𝑆0 ∫ 𝑒𝑒−(𝜇𝜇+𝜌𝜌)𝑑𝑑𝑑𝑑𝑡𝑡 + 𝛽𝛽𝑆𝑆0 ∫ 𝑒𝑒−(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)𝑑𝑑 𝑑𝑑𝑡𝑡∞

0 + 𝛽𝛽𝑆𝑆0 ∫ 𝑒𝑒−(1−𝛼𝛼+𝛿𝛿+𝜇𝜇) 𝑑𝑑𝑡𝑡∞
0

∞
0            (18) 

Integrating (18) yields, 𝜇𝜇0,𝑑𝑑 = 𝛽𝛽𝑆𝑆0 � 1
𝜇𝜇+𝜌𝜌

+ 1
𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇

+ 1
1−𝛼𝛼+𝛿𝛿+𝜇𝜇

�              (19) 
 
Substituting for 𝑆𝑆0 in (19), we get 
 
 𝜇𝜇0,𝑑𝑑 = 𝜋𝜋𝜋𝜋(1−P)�(𝜇𝜇+𝜌𝜌)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)+(𝜇𝜇+𝜌𝜌)(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)+(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)�

𝜇𝜇(𝜇𝜇+𝜌𝜌)(1−𝛼𝛼+𝛿𝛿+𝜇𝜇)(𝛼𝛼+𝛾𝛾+𝛿𝛿+𝜇𝜇)
              (20) 

 
This method gives the correct value for the basic reproduction number as compared to the Next Generation matrix method. 
 
Stability analysis of IFE point of HBV model 
Local stability of IFE point 
This is the stability of system of equations (1) around or within the neighborhood of the infection free equilibrium point. We use 
Jury’s stability test to establish the local stability of 𝐻𝐻0. 
 
Theorem 3: An IFE point of the system of equations (1) is locally asymptotically stable if it all satisfies the following Jury’s 
stability conditions for 𝑃𝑃(𝑧𝑧) = 𝑎𝑎1𝑧𝑧𝑛𝑛 + 𝑎𝑎2𝑧𝑧𝑛𝑛−1 + 𝑎𝑎3𝑧𝑧𝑛𝑛−2 + ⋯… . +𝑎𝑎𝑛𝑛𝑧𝑧0, and whenever 𝜇𝜇𝑑𝑑∗ < 1. 
1. |𝑎𝑎0| < 𝑎𝑎1 
2. 𝑃𝑃(𝑧𝑧 = 1) > 0 
3. For even order, 𝑃𝑃(𝑧𝑧 = −1) > 0 and for odd order 𝑃𝑃(𝑧𝑧 = −1) < 0 
4. |𝑏𝑏𝑛𝑛−1| > |𝑏𝑏0| For all elements in the subsequent rows of the Jury’s array. 
 
The above theorem is proved as follows 
We linearize the system of equations (1) by letting 
 
𝑓𝑓1 ( 𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇 ) = 𝜋𝜋𝑝𝑝1 − (𝜑𝜑 + 𝜇𝜇)𝑀𝑀  
 
𝑓𝑓2 ( 𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇 ) = 𝜋𝜋𝑝𝑝2 − 𝜇𝜇𝜇𝜇  
 
𝑓𝑓3 ( 𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇 ) = π(1 − P) − (μ + λ)S  
 
𝑓𝑓4 (𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇)  = (μ + λ)S + φM − (μ + ρ)E 

 
𝑓𝑓5 (𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇)  = ρE − ( α + γ + δ + μ )A  
 
𝑓𝑓6 (𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇)  = γA − (1 − α +  δ +  μ )C  
 
𝑓𝑓7( 𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇 ) =  αA + (1 − α)C − (ψ + δ + μ )T  
 
𝑓𝑓8 ( 𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝐸𝐸,𝐴𝐴,𝐶𝐶,𝑇𝑇,𝜇𝜇 ) = 𝜓𝜓𝑇𝑇 − 𝜇𝜇𝜇𝜇  
 
The corresponding Jacobian matrix 𝐽𝐽 of 𝑓𝑓1  −  𝑓𝑓8 is as follows 
 

𝐽𝐽(𝐸𝐸0) =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−(𝜑𝜑 + 𝜇𝜇 ) 0 0 0 0 0 0 0
0 −𝜇𝜇 0 0 0 0 0 0
0 0 −𝜇𝜇 −𝛽𝛽𝑆𝑆0 −𝛽𝛽𝜂𝜂1𝑆𝑆0 −𝛽𝛽𝜂𝜂2𝑆𝑆0 0 0
𝜑𝜑 0 0 𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌 −𝛽𝛽𝜂𝜂1𝑆𝑆0 −𝛽𝛽𝜂𝜂2𝑆𝑆0 0 0
0 0 0 𝜌𝜌 −(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇) 0 0 0
0 0 0 0 𝛾𝛾 −(1 − α +  δ +  μ) 0 0
0 0 0 0 𝛼𝛼 1 − α −(ψ + δ + μ ) 0
0 0 0 0 0 0 𝜓𝜓 −𝜇𝜇⎠

⎟
⎟
⎟
⎟
⎟
⎞

   (21) 

 
Reducing 𝐽𝐽(𝐸𝐸0) by Gauss elimination method by the following row operations, we get 
 
 𝜇𝜇4 → 𝜑𝜑𝜇𝜇1 + (𝜑𝜑 + 𝜇𝜇 )𝜇𝜇4 
 
𝜇𝜇2 → 𝜌𝜌𝜇𝜇1 − (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)𝜇𝜇2  
 
𝜇𝜇2 → 𝛾𝛾𝜇𝜇1 − �−𝛽𝛽𝜌𝜌𝜂𝜂1𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)�𝜇𝜇2  
 
𝜇𝜇3 → 𝛼𝛼𝜇𝜇1 − �−𝛽𝛽𝜌𝜌𝜂𝜂1𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)�𝜇𝜇3  
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�
−𝛽𝛽𝛾𝛾𝜌𝜌𝜂𝜂2𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + �−𝛽𝛽𝜌𝜌𝜂𝜂1𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)�(1− α +  δ +  μ) 0 0

−𝛽𝛽𝛼𝛼𝜌𝜌𝜂𝜂2𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) − �−𝛽𝛽𝜌𝜌𝜂𝜂1𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)�(1 − α) (ψ + δ + μ )�−𝛽𝛽𝜌𝜌𝜂𝜂1𝑆𝑆0(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 )(𝛽𝛽𝑆𝑆0 − 𝜇𝜇 − 𝜌𝜌)(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)� 0
0 𝜓𝜓 −𝜇𝜇

�

(22) 
 
By subsequent row reduction and inspection, the eigenvalues of the reduced 𝐽𝐽(𝐸𝐸0) are obtained as −(𝜑𝜑 + 𝜇𝜇 ), – 𝜇𝜇, (𝜑𝜑 +
𝜇𝜇 ) �𝜋𝜋𝜋𝜋(1−𝑃𝑃)

𝜇𝜇
− 𝜇𝜇 − 𝜌𝜌�, −𝜋𝜋𝜋𝜋𝜌𝜌𝜂𝜂1(1−𝑃𝑃)

𝜇𝜇
(𝜑𝜑 + 𝜇𝜇 ) + (𝜑𝜑 + 𝜇𝜇 ) �𝜋𝜋𝜋𝜋(1−𝑃𝑃)

𝜇𝜇
− 𝜇𝜇 − 𝜌𝜌� (𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇) and the corresponding characteristic 

polynomial of |𝐽𝐽(𝐸𝐸0) − 𝑧𝑧𝐺𝐺| = 0 is of order 3, where G is an identity matrix and 𝑧𝑧 is a scalar expressed as  
 
𝑃𝑃( 𝑧𝑧 ) =  𝑎𝑎1 𝑧𝑧 3  +  𝑎𝑎2 𝑧𝑧 2  +  𝑎𝑎3𝑧𝑧 + 𝑎𝑎0,                    (23) 
 
where 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 and 𝑎𝑎0 are obtained as follows; 
 
𝑎𝑎1 = −8 < 0  
 
𝑎𝑎2 = −4𝜇𝜇 + 4𝛼𝛼βS𝜇𝜇 − 4𝛼𝛼2βS𝜇𝜇 + 4βS𝛾𝛾𝜇𝜇 − 4𝛼𝛼βS𝛾𝛾𝜇𝜇 + 4βS𝛿𝛿𝜇𝜇 + 4𝛼𝛼βS𝛿𝛿𝜇𝜇 + 8βS𝛾𝛾𝛿𝛿𝜇𝜇 + 8βS𝛿𝛿2𝜇𝜇 − 4𝛼𝛼𝜇𝜇2 + 4𝑧𝑧2𝛼𝛼2𝜇𝜇2 + 4βS𝜇𝜇2 +
4𝛼𝛼βS𝜇𝜇2 − 4𝛾𝛾𝜇𝜇2 + 4𝛼𝛼𝛾𝛾𝜇𝜇2 + 8βS𝛾𝛾𝜇𝜇2 − 4𝛿𝛿𝜇𝜇2 − 4𝛼𝛼𝛿𝛿𝜇𝜇2 + 16βS𝛿𝛿𝜇𝜇2 − 8𝛾𝛾𝛿𝛿𝜇𝜇2  
 
𝑎𝑎3 = 2(𝛼𝛼βS𝜇𝜇2 − 𝛼𝛼2βS𝜇𝜇2 + βS𝛾𝛾𝜇𝜇2 − 𝛼𝛼βS𝛾𝛾𝜇𝜇2 + βS𝛿𝛿𝜇𝜇2 + 𝛼𝛼βS𝛿𝛿𝜇𝜇2 − 𝛼𝛼2βS2𝛿𝛿𝜇𝜇2 + 𝛼𝛼3βS2𝛿𝛿𝜇𝜇2 + 2βS𝛾𝛾𝛿𝛿𝜇𝜇2 − 2𝛼𝛼βS2𝛾𝛾𝛿𝛿𝜇𝜇2 +
2𝛼𝛼2βS2𝛾𝛾𝛿𝛿𝜇𝜇2 − βS2𝛾𝛾2𝛿𝛿𝜇𝜇2 + 𝛼𝛼βS2𝛾𝛾2𝛿𝛿𝜇𝜇2 + 2βS𝛿𝛿2𝜇𝜇2 − 2𝛼𝛼βS2𝛿𝛿2𝜇𝜇2 + 2𝑆𝑆2𝛼𝛼𝜇𝜇𝜑𝜑𝜓𝜓βγρη1βρη1 − 2𝑆𝑆2𝛿𝛿𝜇𝜇𝜑𝜑𝜓𝜓βγρη1βρη1 −
2𝑆𝑆2𝜇𝜇2𝜑𝜑𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝜑𝜑2𝜓𝜓βγρη1βρη1 + 𝑆𝑆2𝛼𝛼𝜑𝜑2𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝛿𝛿𝜑𝜑2𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝜇𝜇𝜑𝜑2𝜓𝜓βγρη1βρη1 −
𝑆𝑆2𝛿𝛿𝜇𝜇2βγρη2βρη1 − 𝑆𝑆2𝜇𝜇3βγρη2βρη1 − 2𝑆𝑆2𝛿𝛿𝜇𝜇𝜑𝜑βγρη2βρη1 − 2𝑆𝑆2𝜇𝜇2𝜑𝜑βγρη2βρη1 − 𝑆𝑆2𝛿𝛿𝜑𝜑2βγρη2βρη1 − 𝑆𝑆2𝜇𝜇𝜑𝜑2βγρη2βρη1 −
𝑆𝑆2𝜇𝜇2𝜓𝜓βγρη2βρη1 − 2𝑆𝑆2𝜇𝜇𝜑𝜑𝜓𝜓βγρη2βρη1 − 𝑆𝑆2𝜑𝜑2𝜓𝜓βγρη2βρη1)  
 
𝑎𝑎0 = 𝑆𝑆2𝛼𝛼𝜇𝜇𝜑𝜑2𝜓𝜓βγρη1βρη1 + 2𝑆𝑆2𝛼𝛼𝜇𝜇2𝜑𝜑𝜓𝜓βγρη1βρη1 − 2𝑆𝑆2𝜇𝜇2𝜑𝜑𝜓𝜓βγρη1βρη1 − 2𝑆𝑆2𝛿𝛿𝜇𝜇2𝜑𝜑𝜓𝜓βγρη1βρη1 −
2𝑆𝑆2𝜇𝜇3𝜑𝜑𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝜇𝜇𝜑𝜑2𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝛿𝛿𝜇𝜇𝜑𝜑2𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝜇𝜇2𝜑𝜑2𝜓𝜓βγρη1βρη1 − 𝑆𝑆2𝛿𝛿𝜇𝜇3βγρη2βρη1 −
𝑆𝑆2𝜇𝜇4βγρη2βρη1 − 2𝑆𝑆2𝛿𝛿𝜇𝜇2𝜑𝜑βγρη2βρη1 − 2𝑆𝑆2𝜇𝜇3𝜑𝜑βγρη2βρη1 − 𝑆𝑆2𝛿𝛿𝜇𝜇𝜑𝜑2βγρη2βρη1 − 𝑆𝑆2𝜇𝜇2𝜑𝜑2βγρη2βρη1 −
𝑆𝑆2𝜇𝜇3𝜓𝜓βγρη2βρη1 − 2𝑆𝑆2𝜇𝜇2𝜑𝜑𝜓𝜓βγρη2βρη1 − 𝑆𝑆2𝜇𝜇𝜑𝜑2𝜓𝜓βγρη2βρη1  
 
Due to symbolic representation of the polynomial and its coefficients, numerical method is used to confirm the necessary and 
sufficient conditions for Jury’s stability. If the Jury’s condition are satisfied, then IFE point is locally asymptotically stable, an 
implication that the infection does not exist in the population otherwise unstable. 
 
Global stability of IFE point 
For global stability, the system will shift everywhere, if a small perturbation is introduced within the neighborhood of the 
equilibrium point. The Castillo-Chavez method (C.Castillo-Chavez, F. Zhilan and H. Wenzhan., 2002) [3] is applied to assess the 
global stability of 𝐻𝐻0. According to this method, the conditions that must be met in order for the system to be globally 
asymptotically stable are; 
 
C1: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹(𝑋𝑋∗, 0), 𝑋𝑋∗ is globally asymptotically stable 

 
C2: 𝐺𝐺(𝑋𝑋,𝑍𝑍) = 𝐴𝐴𝑍𝑍 − 𝐺𝐺�(𝑋𝑋,𝑍𝑍), 𝐺𝐺�(𝑋𝑋,𝑍𝑍) ≥ 0 for (𝑋𝑋,𝑍𝑍) ∈ Ω, where 𝐴𝐴 = 𝐷𝐷𝑧𝑧𝐺𝐺(𝑋𝑋∗,𝑍𝑍) is a Metzler matrix. 
 
Theorem 4: An IFE point 𝐻𝐻0 is globally asymptotically stable if it satisfies the conditions C1 and C2 whenever 𝜇𝜇𝑑𝑑∗ < 1 
Proof 
We write the reduced system as 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑋𝑋,𝑍𝑍) and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐺𝐺(𝑋𝑋,𝑍𝑍), where the components of X represent the number of susceptible, vaccinated, treated, Passively 
immune and recovered individuals who are non-infectious, that is 𝑋𝑋 = {𝑀𝑀,𝜇𝜇, 𝑆𝑆,𝑇𝑇,𝜇𝜇} and the components of Z denote the number 
of exposed, acute and chronic HBV infected individuals capable of transmitting the infection given as, 𝑍𝑍 = {𝐸𝐸,𝐴𝐴,𝐶𝐶} 
In our case, 
 

 (𝑋𝑋, 0) = 𝐹𝐹(𝑀𝑀,𝜇𝜇, 𝑆𝑆, 0,0) =

⎝

⎜
⎛
𝜋𝜋𝑝𝑝1 − (𝜑𝜑 + 𝜇𝜇)𝑀𝑀

πp2 − μV
π(1 − P) − μS

0
0 ⎠

⎟
⎞

,                  (24) 

 

𝐷𝐷𝑑𝑑𝐹𝐹(𝑋𝑋, 0) =

⎝

⎜
⎛
−(𝜑𝜑 + 𝜇𝜇) 0 0 0 0

0 −μ 0 0 0
0 0 −μ 0 0
0 0 0 0 0
0 0 0 0 0⎠

⎟
⎞

                   (25) 
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 From the above matrix it is clear that the eigenvalues are all negative, thus 𝐻𝐻 0is globally asymptotically stable. Thus, Condition 

C1 satisfied. 
 

𝐺𝐺(𝑋𝑋,𝑍𝑍) = �
(𝜇𝜇 + 𝜆𝜆)𝑆𝑆 + 𝜑𝜑𝑀𝑀 − (𝜇𝜇 + 𝜌𝜌)𝐸𝐸
𝜌𝜌𝐸𝐸 − (𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)𝐴𝐴
𝛾𝛾𝐴𝐴 − (1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)𝐶𝐶

�                    (26) 

 
The Metzler Matrix A is obtained as  
 

𝐴𝐴 = 𝐷𝐷𝑑𝑑𝐺𝐺(𝑋𝑋,𝑍𝑍) = �
𝛽𝛽𝑆𝑆0 − (𝜇𝜇 + 𝜌𝜌) 𝛽𝛽𝜂𝜂1𝑆𝑆0 𝛽𝛽𝜂𝜂2𝑆𝑆0

𝜌𝜌 −(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇) 0
0 𝛾𝛾 −(1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)

�           (27) 

 

𝐴𝐴𝑍𝑍 = �
𝛽𝛽𝑆𝑆0 𝛽𝛽𝜂𝜂1𝑆𝑆0 𝛽𝛽𝜂𝜂2𝑆𝑆0
𝜌𝜌 −(𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇) 0
0 𝛾𝛾 −(1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)

��
𝐸𝐸
𝐴𝐴
𝐶𝐶
� = �

𝛽𝛽𝑆𝑆0𝐸𝐸 + 𝛽𝛽𝜂𝜂1𝑆𝑆0𝐴𝐴 + 𝛽𝛽𝜂𝜂2𝑆𝑆0𝐶𝐶
𝜌𝜌𝐸𝐸 − (𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)𝐴𝐴
𝛾𝛾𝐴𝐴 − (1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)𝐶𝐶

�        (28) 

 
But 

 𝐺𝐺�(𝑋𝑋,𝑍𝑍) = 𝐴𝐴𝑍𝑍 − 𝐺𝐺(𝑋𝑋,𝑍𝑍) = �
𝛽𝛽𝑆𝑆0𝐸𝐸 + 𝛽𝛽𝜂𝜂1𝑆𝑆0𝐴𝐴 + 𝛽𝛽𝜂𝜂2𝑆𝑆0𝐶𝐶
𝜌𝜌𝐸𝐸 − (𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)𝐴𝐴
𝛾𝛾𝐴𝐴 − (1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)𝐶𝐶

� − �
(𝜇𝜇 + 𝜆𝜆)𝑆𝑆 + 𝜑𝜑𝑀𝑀 − (𝜇𝜇 + 𝜌𝜌)𝐸𝐸
𝜌𝜌𝐸𝐸 − (𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿 + 𝜇𝜇)𝐴𝐴
𝛾𝛾𝐴𝐴 − (1 − 𝛼𝛼 + 𝛿𝛿 + 𝜇𝜇)𝐶𝐶

�        (29) 

 

�
𝐺𝐺�1(𝑋𝑋,𝑍𝑍)
𝐺𝐺�2(𝑋𝑋,𝑍𝑍)
𝐺𝐺�3(𝑋𝑋,𝑍𝑍)

� = �
𝛽𝛽(𝐸𝐸 + 𝜂𝜂1𝐴𝐴 + 𝜂𝜂2𝐶𝐶)(𝑆𝑆0 − 𝑆𝑆) − 𝜇𝜇𝑆𝑆 − 𝜑𝜑𝑀𝑀 + (𝜇𝜇 + 𝜌𝜌)𝐸𝐸

0
0

�             (30) 

 
Thus, if 𝐺𝐺�(𝑋𝑋,𝑍𝑍) ≥ 0 then the IFE point H0 is globally asymptotically stable otherwise unstable. Since the number of susceptible 
is bounded, then𝑆𝑆 ≤ 𝑆𝑆0. Hence 𝐺𝐺�(𝑋𝑋,𝑍𝑍) ≥ 0, implying that IFE point is globally asymptotically stable when 𝜇𝜇𝑑𝑑∗ < 1.Condition 2 
is also satisfied. Hence the prove of the theorem. 
 
Existence of HBV Endemic equilibrium point  
An endemic equilibrium point is the solution to the system of equations (1) in which HBV infection is present in the population. 
The solution starts in the given interval and stay in the interval for all time. We set the RHS of system of equations (1) to zero and 
the infectious compartments are non-zero and we denote 𝐻𝐻∗ = ( 𝑀𝑀∗,𝜇𝜇∗,  𝑆𝑆∗,𝐸𝐸∗,𝐴𝐴∗,  𝐶𝐶∗,  𝑇𝑇∗,𝜇𝜇∗) as the endemic equilibrium point 
of the system of equations (1), 
 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋𝑝𝑝1  − 𝑤𝑤1𝑀𝑀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋𝑝𝑝2 − 𝜇𝜇𝜇𝜇∗
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= π(1 − P) − (μ + λ)S∗
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (μ + λ )S∗ + φ𝑀𝑀∗ − w2E∗ 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ρE∗ − w3A∗

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= γA∗ − w4C∗
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= αA∗ + w5C∗ − w6T∗

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ψT∗ −  μR∗ ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

                     (31) 

 
𝑤𝑤1 = 𝜑𝜑 +  𝜇𝜇, w2 = (μ + ρ), w3 = α + γ + δ +  μ, w4 = (1 − α +  δ +  μ ),w5 = 1 − α, w6 = (ψ + δ +  μ ) 
 
Solving (31) for 𝑀𝑀∗,𝜇𝜇∗,  𝑆𝑆∗,𝐸𝐸∗,𝐴𝐴∗,  𝐶𝐶∗,  𝑇𝑇∗,𝜇𝜇∗, we obtain 
 
 𝑀𝑀∗ =  𝜋𝜋𝑝𝑝1

w1 
, 𝜇𝜇∗ = 𝜋𝜋𝑝𝑝2

𝜇𝜇
, S∗ = 𝜋𝜋(1−𝑃𝑃)

𝜇𝜇+𝜆𝜆∗
, E∗ = (𝜇𝜇+𝜆𝜆∗)𝑑𝑑∗+𝜑𝜑𝑑𝑑∗

𝑤𝑤2
, A∗ = 𝜌𝜌𝑑𝑑∗

𝑤𝑤3
, C∗ = 𝛾𝛾𝑑𝑑∗

𝑤𝑤4
, 𝑇𝑇∗ =  𝛼𝛼𝑑𝑑

∗+𝑤𝑤5𝑑𝑑∗

𝑤𝑤6
, 𝜇𝜇∗ = 𝜓𝜓𝑑𝑑∗

𝜇𝜇
      (32) 

 
Theorem 5: An E.E 𝐻𝐻∗ exists whenever 𝜇𝜇𝑑𝑑∗ > 1, otherwise it doesn’t exist. 
Proof 
For endemic equilibrium point to exist 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
> 0, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
> 0 and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
> 0, that is 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (μ + λ )S0 + φ𝑀𝑀0 − w2E > 0                     (33) 
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 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= ρE − w3A > 0                         (34) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= γ𝐴𝐴 − w4C > 0                         (35) 
 
From the inequalities 14, 15 and 16 we get  
 
𝐸𝐸 = (μ+β(E+𝜂𝜂1A+𝜂𝜂2C))S0+φ𝑑𝑑0

w2
                       (36) 

 
A = ρE

w3 
                            (37) 

 
𝐶𝐶 = γρE

w3w4
                           (38) 

 
Substituting (37) and (38) into (36) yields 
 
𝐸𝐸 = 𝛽𝛽ES0 + 𝛽𝛽S0𝜂𝜂1

ρE
w3 

+ 𝛽𝛽S0𝜂𝜂2
γρE
w3w4

+ 𝜇𝜇S0 + 𝜑𝜑𝑀𝑀0                 (39) 
 
By comparison theorem, 
 
 𝐸𝐸 < 𝛽𝛽ES0 + 𝛽𝛽S0𝜂𝜂1

ρE
w3 

+ 𝛽𝛽S0𝜂𝜂2
γρE
w3w4

                    (40) 
 
By factoring E, (40) simplifies to 1 < 𝛽𝛽S0 + 𝛽𝛽S0𝜂𝜂1

ρ
w3 

+ 𝛽𝛽S0𝜂𝜂2
γρ

w3w4
= 𝜇𝜇𝑑𝑑∗           (41) 

 
𝜇𝜇𝑑𝑑∗ > 1, thus, an endemic equilibrium point H* exists.     
 
Numerical Results and Discussion 
In this section, numerical simulations were conducted using MATLAB software (R2017a) to examine the dynamics of the HBV 
model over time. The initial conditions for the model's variables and the parameter values used for the simulations were obtained. 
Table 4.1 displayed a selection of parameter values sourced from the literature, while others were computed for illustrative 
purposes. The numerical simulations of the model's system of ordinary differential equations were carried out using the ode45 
solver. The initial values for certain state variables were determined based on an estimated Hepatitis B prevalence of 5-8%. For 
the model simulation, the current birth rate for Kenya in 2022 was considered to be 27.667 births per 1000 people. Additionally, 
the Hepatitis B birth dose vaccination coverage was set at 3.2%. The model's variables and parameters were derived from 
published Hepatitis B data, as presented in Table 1. As per the KDHS report of 2022, the life expectancy at birth in Kenya was 
reported to be 69.32 years. The birth rate was estimated at 26.78 births per 1000 population, while the death rate stood at 5.09 
deaths per 1000 people. Some of the parameters were calculated based on these known rates and variables as documented in the 
literature. 
 

Table 1: Parameter values and initial conditions 
 

Parameter description Parameter 
symbol 

Nominal 
Value/Range Source 

Birth rate 𝜋𝜋 0.027667 2021 KNBS estimates 
Natural mortality rate 𝜇𝜇 0.00509 2021 KNBS estimates 

Total population N 54685051 Kenya Demographic profile, population estimates 2021 
Effective contact rate 𝛽𝛽 0.3- 0.9 Elena Gai Wang, 2022 [5] 

HBV induced mortality rate 𝛿𝛿 0.041 Chao Wang and Fuqiang Cui,2022 [23] 
HBV Exposure rate 𝜌𝜌 0.5-0.9 Gul Zaman, Yong Han Kang, and Il Hyo Jung, 2008 [10] 

Proportion of passively immune births 𝑝𝑝 0.1-0.9 Pauline Van den Driessche and James Watmough, 2002 [17] 
HBV diagnosis /screening rate 𝛼𝛼 0-0.1 Moosarreza Shamsyeh Zahedi and Narges Shayegh Kargar, 2017 [16] 

HBV recovery rate due to treatment 𝜓𝜓 0.25-0.32 Pauline Van den Driessche and James Watmough, 2002 [17] 
Acute HBV transition rate 𝛾𝛾 0.02-0.9 CDC Kenya, 2016 

Passive immunity waning rate 𝜑𝜑 0.2-0.5 Zohreh Azarkar et al, 2018 [22] 
 
Local Sensitivity analysis of 𝑹𝑹𝒄𝒄, 𝑹𝑹𝟎𝟎 and Strength number 
The forward normalized sensitivity of 𝜇𝜇0 is determined using the partial derivatives of 𝜇𝜇0 with respect to the focal parameter as in 
the expression below 
 
Λ∅
𝑑𝑑0 = 𝜕𝜕𝑑𝑑0

𝜕𝜕∅
× ∅

𝑑𝑑0
                         (42) 

 
The sensitivity indices based on 𝜇𝜇𝑐𝑐 are computed from the expression (42) as tabulated below 
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 Table 2: Sensitivity indices for Control reproduction number 

 

Parameter Sensitivity index for 𝑹𝑹𝒄𝒄 
𝛽𝛽 1 
𝛼𝛼 −0.031238 
𝛾𝛾 −0.19082 
𝛿𝛿 −0.000239188 
𝜑𝜑 0 
𝜇𝜇 −1.013047 
𝜋𝜋 1 
𝜌𝜌 −0.62915 
𝑃𝑃 −0.25 

 
From the above sensitivity indices, it is evident that, the contact rate and birth rate have a strong positive correlation and directly 
proportional to 𝜇𝜇𝑐𝑐, whereas death rate has a strong negative correlation and inversely proportional to 𝜇𝜇𝑐𝑐. The exposure and 
transition rate have weak negative correlation. The implication of these indices is that decreasing the contact rate and birth rates 
decreases the control reproduction number and vice-versa. On the other hand, decreasing the exposure rate increases the control 
reproduction number. 
 
Simulation of population dynamics and the impact of control interventions 
The system of equations (1) are coded in MATLAB (R2017a) together with parameter values and initial conditions. The fourth 
order Runge-Kutta an inbuilt numerical scheme coded programming language is used for the numerical simulations of model 
system of ordinary differential equations. The results depict the dynamics of the populations with time to project future trends of 
the outcomes of the infection. The graphical representations are as shown in the figures below 
 

 
 

Fig 1: Simulation of M (t) 
 
From figure 1, research findings indicated that a reduction in the rate at which passive immunity waned led to a decrease in the 
population with passive immunity against HBV. Consequently, immunizing infants immediately after birth emerged as a viable 
approach to curbing Hepatitis B transmission within the community. 
 

 
 

Fig 2: Simulation of S (t) 
 
As illustrated in Figure 2, when the effective reproduction number falls below one, the susceptible population diminishes as 
immunity acquired at birth declines. This validates that when the average number of infected individuals transmitting the infection 
to susceptible individuals over time drops below one, the infected population diminishes, ultimately leading to the extinction of 
the infection. 
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Fig 3: Simulation of E (t) 
 

As depicted in Figure 3 above, initially, there is a rise in the number of individuals who have been exposed to the virus for a 
period of three years, primarily because of the high transmission rate and a relatively low level of passive immunity. 
Subsequently, this population of exposed individuals decreases over time due to an increase in the rate of vaccinating infants at 
birth and administering progressive HBV vaccine doses. As a result of ongoing efforts in diagnosing and vaccinating susceptible 
individuals, the population of exposed individuals diminishes steadily, ultimately leading to the eventual eradication of the 
infection over time. 
 

 
 

Fig 4: Simulation of A (t) 
 
As represented in Figure 4 above, there is a notable increase in the number of individuals with acute infection, correlating with the 
rise in the population of individuals who have been exposed to the virus for a duration of four years. Subsequently, owing to early 
diagnosis and effective treatment, the number of individuals with acute infection gradually diminishes over time, preventing the 
progression to chronic HBV infection. This decline signifies the eventual eradication of the infection as time progresses. 
 

 
 

Fig 5: Simulation of C (t) 
 
As shown in the figure 5 above, initially, the count of individuals with chronic HBV infection rises in tandem with the growth of 
exposed and acute populations over a span of six years. Subsequently, with the elevation of the treatment rate for individuals with 
acute infection, the number of those with chronic HBV infection declines. Given that there is no transition of the infection from 
one stage to another, the overall infected population drops over time, ultimately leading to the extinction of the infection. 
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Fig 6: Simulation of T (t) 
  
From figure 6 above, in the initial phases of the infection, there's an uptick in the count of individuals receiving treatment, driven 
by the heightened treatment rates for those with acute and chronic conditions. However, after a span of seven years, the population 
of individuals under treatment falls, corresponding to a reduction in the rate of transmission. This phenomenon signifies that 
treatment control measures effectively bring down the effective reproduction number to below one, ultimately leading to the 
gradual extinction of the infection. Consequently, the infection is successfully contained. 
 

 
 

Fig 7: Simulation of R (t) 
  
In the beginning, the count of individuals who have recovered shows a rise, and this rise is a result of an increase in the treatment 
rate, leading to a higher number of treated individuals. This increase can be attributed to the application of a consistent treatment 
regimen and the administration of effective treatment doses. It reinforces the idea that when the average number of infected 
individuals transmitting the infection to susceptible individuals over time drops below one, the number of infected individuals 
decreases, ultimately resulting in the extinction of the infection. 
 
Variation of contact rate, screening rate and immunity waning rate on contagious populations 
Figures 8 to 11 illustrates how the contact rate affects the infectious populations over a span of two decades. Within the same 
range of beta values, a noteworthy observation is the swift rise in the exposed population during the infection's early stages, 
followed by a gradual decline as it gradually diminishes within the population. This observation serves as an indicator of the 
presence of an infection-free equilibrium point. 
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Fig 8: Effect of contact rate on exposed population 
 
In figure 9 below the population with Acute Hepatitis B increases for different values of contact rate for about 3years and 
afterwards decreases slowly as the infection dies out of the population with time. 
 

 
 

Fig 9: Effect of contact rate of acute HBV infected population  
 
The population with chronic HBV increases steadily for a period of 5 years as shown in figure 10 below and then drops slowly as 
the infection goes extinct.  

 

 
 

Fig 10: Effect of contact on chronic HBV infected population  
 
In figure 11, HBV treated population increases exponentially for about 6 years with increase in the contact rate. There after the 
population decreases exponentially as the infection dies out with time. 
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Fig 11: Effect of contact rate on HBV treated population  
 
Many individuals are not aware of the hepatitis infection due to lack of health education focusing on creation of awareness, thus 
the increase. Reinforcing awareness and sensitization intervention, and people encouraged to know their hepatitis status through 
screening the infection fades away, hence the decrease. 
 
Conclusion and Recommendations 
In this study, a deterministic model was developed to describe the transmission dynamics of Hepatitis B, taking into account 
interventions such as infant vaccination at birth, screening, and treatment of acute and chronic cases. The model underwent both 
analytical and numerical analysis, with a focus on investigating how passive immunity, screening, vaccination, and treatment 
impact the transmission dynamics of Hepatitis B. The control reproductive number, denoted as 𝜇𝜇𝑐𝑐, was determined using the Next 
Generation Matrix (NGM) method, calculated as the dominant eigenvalue of the NGM. The analysis revealed that the Hepatitis B 
infection-free equilibrium is achieved and is both locally and globally asymptotically stable when the corresponding reproduction 
number falls below one. This suggests that Hepatitis B elimination is feasible with a thorough understanding and effective 
implementation of these interventions and risk factor management. Additionally, the study used the Jacobian approach to 
determine the Hepatitis B endemic equilibrium point, indicating that without control interventions, Hepatitis B would persist 
within the community. Numerical results were obtained through MATLAB and presented graphically. The model's findings 
emphasized the significance of passive immunity, which is influenced by birth rates, as a crucial transmission factor. Moreover, 
the contact rate was identified as a critical determinant of transmission. The impact of control interventions on the contagious 
population indicated a substantial reduction in transmission when cases were detected early. Consequently, the study recommends 
the implementation of effective detection and early treatment programs for all exposed individuals following early diagnosis, 
before the HBV viral load increases. This approach aims to curtail the progression of the infection to acute or chronic stages. 
Furthermore, the study suggests enforcing early screening of pregnant mothers for HBV during pregnancy. It also advocates for 
universal vaccination of infants at birth and the completion of the HBV vaccination schedule. These recommendations are seen as 
valuable measures to contain HBV infection, particularly among the younger population. 
In conclusion, this model provides valuable insights for healthcare workers, policymakers, the Ministry of Health, and 
practitioners regarding the etiology and risk factors associated with Hepatitis B, as well as effective mitigation measures. The 
study underscores the importance of mass screening and public awareness campaigns as fundamental efforts in the prevention and 
control of Hepatitis B. 
 
Further reading: Mathematical models incorporating vaccination of susceptible population as well as time delay, non-clinical 
interventions should be explored. 
 
Funding: This research study has not received funding yet. 
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