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Abstract 

In this paper, the mixed norm double sequence spaces 
q,p2  for 1 p, q   are the subject of our 

research; we establish conditions for an operator T  to be compact, where AT  is given by a diagonal 

matrix. This will be achieved by applying the Hausdroff measure of non-compactness and the theory of 

BK spaces. This problem was treated and solved in, but in a different way, without the application of the 

theory of infinite matrices and BK spaces. Here, we will present a new approach to the problem. Some of 

our results are known and others are new. 
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Introduction 

As usual, let  denote the set of all complex sequences x=   0n,mmnx ,
2
  the set of all 

bounded sequences in  , and 
2
p =





















 p
mn

knm2

|x|x  for 0< p< . 

The spaces 
q,p2  were introduced by Kellogg in [7] and further studied by many authors [1-6]; 

they are defined for 1 p, q   by 
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where I(0) = {0} and I(m, n) =  ji1j,1i 2nm2Nj,i    for m > 0. They are 

Banach spaces equipped with the norms 

 

 
q,p

x = 

q1
pq

p
mn

Iji2knm2
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)nm( 
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and referred to as mixed norm spaces. 

Let us remark that we could generalize our research by replacing dyadic blocks by arbitrary 

blocks, similarly as in [1]. In that case we would have )j,i(I =

 1)1j,1i(knm)ji(kNn,m   for i, j= 0, 1, 2, … where   0j,i)j,i(k  is a 

strictly increasing sequence of integers with k(0) = 0.
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 If p =   or q =  , the corresponding sum should be replaced by the supremum, that is, 

for p =   and 1   q <  , 

 

q,2  = 
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with the norm 
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for 1   p <   and q =  , 
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with the norm 
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for p = q =  , 

 

,2 = 





































mn
In,m2j,i

x

)j,i(
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with the norm 

 

 
,

x = 



















 mn
In,m2j,i

x

)j,i(

sup                    (8) 

 

Note that 
p,p2  = 

p2  for 1   p    . 

 

For any two subset E and F of  , the set of multipliers from E to F, is defined as 

M(E, F) = 

 

      EinxxeachforFx 0n,mnm0n,mnmnmx0n,mnm








  . 

 

The following results are of interest for the characterizations of the multipliers M  v,u2s,r2 ,  . 

 

Theorem 

[7, Theorem 1] Let 1   r, s, u, v  , and define p and q by 
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p

1
 = 

u

1
 – 

r

1
 if r > u,   p =   if r u, 

q

1
 = 

v

1
 – 

s

1
 if s > v,  q =   if s v. 

 

Then M  v,u2s,r2 ,   = 
q,p2 . 

Further, for  M  v,u2s,r2 ,  , let us consider operator T : 
s,r2   v,u2  defined by 

 

T (x) = x  =    0n,mmnmn x  s,r2x  . 

 

Kellogg [7] proved that T  defined in such a way is a bounded linear operator with norm T  = 
q,p

 , where r, s, u, v, p and 

q satisfy the conditions stated in the previous theorem [5]. Actually, T : 
s,r2   v,u2  is a bounded linear operator if and 

only if  
q,p2 . 

In [5, 6], the authors studied the Hausdorff measure of non-compactness of the operator T  depending on different cases and found 

the exact measure or gave estimates for it. They did, however, not make use of any relation between matrix transformation 

between sequence spaces and bounded linear operators. 

Our idea is to give a new approach to the same problem, by using the theory of BK spaces and matrix transformations. 

We use the following standard notations. 

We write B(X, Y) for the set of all bounded linear operators between the normed spaces X and Y. If X and Y are any subsets of 

 , then (X, Y) denotes the set of all infinite matrices A =  
 0n,m,n,mn,m,n,ma  that map X into Y, that is, A(X, Y) if 

and only if the series Amn(x) = 

knm2 

 nmmna  nmx   converges for all m, n = 0, 1, … and all xX, and Ax = 

  0n,mmn xA Y for all xX. We write Am,n =  
 0n,mn,m,n,ma  for the sequence in the n-th row of the matrix A. 

A BK-space is a Banach sequence space X with continuous coordinates Pmn (n = 0, 1, …) where Pmn(x) = xmn for each sequence x 

=  
 0n,mn,mx  X. By   we denote the set of all finite sequences. A BK-space X   is said to have AK if 

]j,i[x  = 

jinm2 

 nmx 
)nm(e
 x(i + j  ) for every sequence x =  

 0n,mn,mx  X. 

It is known [4, Example 3.4(a)] that the space 
q,p2  is a BK-space with AK for 1 p  , 1 q <  . Also, the space 

q,2   

is a BK-space for 1  q   . 

We need the following important result. 

 

Proposition: Let X and Y be BK-spaces. 

Then we have (X, Y)B(X, Y), that is, every matrix A(X, Y) defines an operator LAB(X, Y), where LA(x) = Ax for all x
X [10, Theorem 4.2..8]. 

If X has AK then we have B(X, Y) (X, Y) that is, every operator LB(X, Y) is given by a matrix A(X, Y), where Ax = L(x) 

for all xX[3, Theorem 1.9].  

Hence, we can consider the infinite matrix A = A(  ) = 

 
 0n,m,n,mn,m,n,ma  associated to the operator T  such that T x = Ax for all x

s,r2  for 1  r   and 1 s  . 

The matrix A clearly is the diagonal matrix with the sequence   on its diagonal. It is also clear that Ax =    0n,mmnmn x  

for all x
s,r2 . 

As mentioned before, the compactness of operators will be treated by applying the theory of infinite matrices and the Hausdroff 

measure of non-compactness, so the next definition and results will be very useful for our work. 

We recall the definition of the Hausdroff measure of non-compactness of bounded sets in metric spaces and operators between 

Banach spaces. Let X be a complete metric space and Mx denote the class of bounded subsets of X. Then the function  : Mx

 ,0  defined by 
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  (Q) = inf{   > 0 |Q can be covered by finitely many open balls of radii <  } is called the Hausdroff measure of non-

compactness;  (Q) is called the Hausdroff measure of non-compactness of the set QMX. Let 
1

 and 
2

 be Hausdroff 

measures of non-compactness on the Banach-spaces X and Y. An operator L: XY is said to be  
2

,
1
 –bounded if L(Q)

MY for all QMX and there exists a non-negative real number c such that 

 

2
 (L(Q))c. )Q(

1
  for all QMX.                    (9) 

 

If an operator L is  
2

,
1
 –bounded, then the number 

 

 


L = inf{c 0: (1.9) holds} 

 

is called the Hausdroff measure of non-compactness of L. 

 

Theorem: ([8, Theorem 2.25]) Let X and Y be Banach spaces, A(X, Y), and SX = {xX | ||x|| = 1} and XB = {xX | ||x|| 1} 

denote the unit sphere and closed unit ball in X. Then the Hausdroff measure of non-compactness of the operator LA, denoted by 

AL , is given by 

 

AL =   XA BL  =   XA SL . 

 

Theorem 1.4: ([5, Lemma 2.1 ]) Let Q q,pM


(p[1, ], q[1, )), and let Rn: 
q,p2  q,p2  for n = 0, 1, 2, … be the 

operator defined by Rmn(x) = x – x[mn] for all x =  
0j,ij,ix 

q,p2 . Then we have 

 

 (Q) = 
n,m

lim
















)x(Rsup mn
Qx

. 

 

Theorem 1.5 (Goldenštein, Gohberg, Markus): ([8, Theorem 2.23]) Let X be a Banach space with Schauder basis {e1, e2, …, 

en}. Q be a bounded subset of X and Pm,n: XX be the projector onto the linear space of {e1, e2, …, en}. Then we have 

 

a

1

nm
lim sup  


















xPIsup n,m
Qx

  (Q) 
nm

lim sup  

















xPIsup n,m
Qx

, 

 

where a = lim

nm

sup n,mPI . 

 

Main Results 

Let m and n be non-negative integers. We write I(i, j, m, n) = I(i, j)\(0, 1, 2, …, m, n) and 
)mn( = Rmn( ). So the operator 

)mn(
T


 is 

associated with the diagonal matrix A(mn) (  ) which is obtained from the diagonal matrix A(  ) by replacing 





























mnm

n112

n001

m

11

00

...
2

...

...

1

, by 0. 

 

Theorem 2.1: Let r, s, u, v, p, q be as in Theorem 1.1. Then we have for  
q,p2 . 
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T = 
nm

lim

q1
pq

p
nm

InmNji2 )j,i,n,m( 

































 



  if v <   and v < s and r > u; 

T = 

nm
lim

q1
q

p
nm

InmNji2 )j,i,n,m(

sup



































 


  if v <  and v < s and r   u; 

 

T =

nm
lim

p1
p

p
nm

Inmj,i )j,i,n,m(

supsup



































 


 if v <   and v   s and r > u; 

 

T =
nm

lim sup| mn| if v <   and v s and r   u; 

 

0   
T 

nm
lim

q,p

)mn(  if v =  . 

 

Proof: We write K = s,rB


, for short, and denote by A the diagonal matrix that represents the operator T(  ). First, we consider 

the case v <  . The subcases are v < s and v s. 

We assume v < s. If r > u, then we have by Theorem 1.4 

 

 
T = ))K(L( A  =

nm
lim sup )Ax(R n,m =

nm
lim

Kx

sup


]n,m[)x.(x.   

  

= 
nm

lim
Kx

sup


)x(T
)mn(

  = 
nm

lim
q,p

)n,m(  

 

= 
nm

lim

q1
pq

p
nm

Inm2Nji2 )n,m,n,m( 









































  

 

If r  u, then p =   and once again we can apply Theorem 1.4, and obtain in the same way as in the previous case 

 

T =

nm
lim

q,

)n,m(


 =

nm
lim

q1
q

nm
InmNji2 )n,m,j,i(

sup



































 


 . 

 

Now we assume v s. 

The fact that v s means that q =  . Since v is still less than infinity, we can apply Theorem 1.4 and obtain as in the case v > s 

the following subcases and corresponding results. 

For r > u, we have 
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T =

nm
lim




,p

)n,m(
=

nm
lim

p1
p

nm
Inmj,i )n,m,j,i(

sup



































 


 . 

 

Similarly, for r   u, we actually obtain p = q =  , and so 

 

T =

nm
lim




,

)n,m(
= 

nm
lim sup mn . 

 

We have covered all cases where we were able to apply Theorem 1.4, and established identities for the Hausdroff measure of non-

compactness of the operator T . In the case of v =  , we will not be able to apply Theorem 1.4. In this case, we will only give 

estimates for the Hausdroff measure of non-compactness of the operator. As a consequence of this, we will not be able to give 

necessary and sufficient conditions for the compactness of the operator T  as in the case v <  . 

We assume v =  , and that K is unit sphere in 
s,r2 , r, s[1,  ]. We define the operators Pmn, Rmn: 

,u2  ,u2 (n = 

0, 1, …) by Pmn(x) = x[mn] and Rmn(x)=x–x[mn] for x=    0n,mnmx 
,u2 . Since LA(K)Pm,n(LA(K))+ Rm,n(LA(K)), it follows 

from the elementary properties of the function   [8, Theorem 2.12] that 

 

  (LA(K))  (Pm,n(LA(K)))+ (Rm,n(LA(K)))= (Rm,n(LA(K)))
Kx

sup


))x(L(R An,m . 

 

Taking into account the special form of the infinite matrix A associated with the operator T , we obtain 

 

Kx

sup


))x(L(R An,m =

Kx

sup


]n,m[)x.(x.  =

Kx

sup


)x(T
]n,m[

 =
]n,m[

T
 =

q,p

)n,m( . 

 

It is clear that in this case we have q =   (either s = v =  , or s < v =  ). The sub-cases which can be considered are r > u and 

r u; they can be treated in the same way as before. Hence, we obtain 0 
T 

nm
lim

q,p

)n,m(  if v =  , that is, 

 

0
T 

nm
lim  

j,i

sup  

p1

p
nm

In,m )n,m,j,i( 















 


 , if v =   and r > u; 

 

0
T 

nm
lim nm

In,m )n,m,j,i(

sup 


 , if v =   and r   u. 

 

All considered cases imply the following corollary by [8, Corollary 2.26 (2.58)]. 

 

Corollary: Let r, s, u, v, p, q be as in Theorem 1.1. Then we have for 
q,p2 . 

 

T is compact if and only if 
nm

lim

q1
pq

nm
In,mNji2 )n,m,j,i( 


































 



 =0 if v <   and v < s and r > u; 
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T is compact if and only if 

nm
lim

q1
q

nm
In,mNji2 )n,m,j,i(

sup



































 


 = 0 if v <   and v < s and r   u; 

 

T is compact if and only if 

nm
lim

p1
p

nm
In,mNji2 )n,m,j,i(

sup



































 


 = 0 if v <   and v < s and r   u; 

 

T is compact if and only if 

nm
lim sup mn  = 0 if v <   and v s and r u; 

If 

nm
lim  

q,p

)n,m( = 0 and v =  , then T  is compact. 

 

Let us remark that in the case when v = , we obtain only a sufficient condition for the compactness of the operator T . The 

application of the Goldenštein-Gohberg-Markus theorem only gives sufficient conditions for the compactness of the operator T  

associated with the matrix A when 
v,u2  has no Schauder basis. In our paper, that is the case v =  , that is T : 

s,r2 

,u2 . But we will give an improvement for a few sub-cases. 

 

Theorem: Let r, s, u, v, p, q be as in Theorem 1.1 r , s , u , p , q  be the conjugate numbers of r, s, u, p, q, v =  and s  . Then 

we have for T : 
s,r2  ,u2 :  

 

T  is compact if and only if 
nm

lim












































p1

p
mn

In,mj,i )n,m,j,i(

sup
 = 0 if 1 < s <  and r < u ; 

 

T  is compact if and only if 
nm

lim sup mn = 0 if 1 < s <  and u  r ; 

 

If 
nm

lim
q,p

)n,m(


 = 0 and s = 1, then T  is compact. 

 

Proof 

We consider the case v = . Then 
v,u2   = 

1,u2   is a BK-space with AK. Hence, for s <  we can apply [10, Theorem 8.3.9] 

and obtain the following: A(
s,r2 ,

,u2 ) if and only if AT(
1,u2  , 

s,r2  ) where AT is transpose matrix of A. Since A = 

A(  ) is the diagonal matrix with the sequence   on its diagonal, we have (A(  ))T = A( ). Further, applying [9, Theorem 3], we 

have that the operator T  associated with the matrix A(
s,r2 ,

,u2 ) is compact if and only if the operator 
TT
  associated 

with the transpose matrix AT(
1,u2  ,

s,r2  ) is compact. Since s  , we have that s  1, that is, 1 < s   . Now, the 

results follow directly from Theorem 1 and Corollary 2 having in mind the definition of the matrix A = A(  ) and the following 

table: 

 

Before   Now 

r   u  

s   1 

u   r  

v =     s  

 

The only case which can not be improved, that is, only a sufficient condition can be defined is when v = s =  . 
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